Sirt1 Regulates Proliferation and Regeneration of Glial Progenitor Cells After Injury

Summary: A new study reports Sirt1 can help glial cells to regenerate from progenitor cells in preterm babies with hypoxia related injuries.

Source: Children’s National Health System.

Preemie brains hold specialized cells in reserve that can repair brain injury suffered early in life.

Developing brains in newborns have a sizable pool of a certain type of immature progenitor cell that can be expanded and induced to replace cells lost to brain injury. In a pre-clinical model of premature brain injury, the sirtuin protein Sirt1 plays a crucial role in regenerating glial cells from endogenous progenitor cells after hypoxia-related brain injury suffered by preemies, a research team led by Children’s National Health System reports December 19 in Nature Communications.

“It is not a cure. But, in order to regenerate the white matter that is lost or damaged, the first steps are to identify endogenous cells capable of regenerating lost cells and then to expand their pool. The glial progenitor cells represent 4 to 5 percent of total brain cells,” says Vittorio Gallo, Ph.D., Director of the Center for Neuroscience Research at Children’s National, and senior author of the study. “It’s a sizable pool, considering that the brain is made up of billions of cells. The advantage is that these progenitor cells are already there, with no requirement to slip them through the blood-brain barrier. Eventually they will differentiate into oligodendrocyte cells in white matter, mature glia, and that’s exactly what we want them to do.”

The study team identified Sirt1 as a novel, major regulator of basal oligodendrocyte progenitor cell (OPC) proliferation and regeneration in response to hypoxia in neonatal white matter, Gallo and co-authors write. “We demonstrate that Sirt1 deacetylates and activates Cdk2, a kinase which controls OPC expansion. We also elucidate the mechanism by which Sirt1 targets other individual members of the Cdk2 signaling pathway, by regulating their deacetylation, complex formation and E2F1 release, molecular events which drive Cdk2-mediated OPC proliferation,” says Li-Jin Chew, Ph.D., Research Associate Professor at Children’s Center for Neuroscience Research and a study co-author.

Hypoxia-induced brain injury in neonates initiates spontaneous amplification of progenitor cells but also causes a deficiency of mature oligodendrocytes. Inhibiting Sirt1 expression in vitro and in vivo showed that loss of its deacetylase activity prevents OPC proliferation in hypoxia while promoting oligodendrocyte maturation – which underscores the importance of Sirt1 activity in maintaining the delicate balance between these two processes.

The tantalizing findings – the result of four years of research work in mouse models of neonatal hypoxia – hint at the prospect of lessening the severity of developmental delays experienced by the majority of preemies, Gallo adds. About 1 in 10 infants born in the United States are delivered preterm, prior to the 37th gestational week of pregnancy, according to the Centers for Disease Control and Prevention. Brain injury associated with preterm birth – including white matter injury – can have long-term cognitive and behavioral consequences, with more than 50 percent of infants who survive prematurity needing special education, behavioral intervention and pharmacological treatment, Gallo says.

Time is of the essence, since Sirt1 plays a beneficial role at a certain place (white matter) and at a specific time (while the immature brain continues to develop). “We see maximal Sirt1 expression and activity within the first week after neonatal brain injury. There is a very narrow window in which to harness the stimulus that amplifies the progenitor cell population and target this particular molecule for repair,” he says.

Image shows a preterm baby.
Preemie brains hold specialized cells in reserve that can repair brain injury suffered early in life, a research team led by Children’s National Health System reports Dec. 19 in Nature Communications.NeuroscienceNews.com image is credited to Children’s National Health System.

Sirt1, a nicotinamide adenine dinucleotide-dependent class III histone deacetylase, is known to be involved in normal cell development, aging, inflammatory responses, energy metabolism and calorie restriction, the study team reports. Its activity can be modulated by sirtinol, an off-the-shelf drug that inhibits sirtuin proteins. The finding points to the potential for therapeutic interventions for diffuse white matter injury in neonates.

Next, the research team aims to study these processes in a large animal model whose brains are structurally, anatomically and metabolically similar to the human brain.

“Ideally, we want to be able to promote the timely regeneration of cells that are lost by designing strategies for interventions that synchronize these cellular events to a common and successful end,” Gallo says.

About this neuroscience research article

Source: Dee Henderson – Children’s National Health System
Image Source: NeuroscienceNews.com image is credited to Children’s National Health System.
Original Research: Full open access research for “Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury” by Beata Jablonska, Marcin Gierdalski, Li-Jin Chew, Teresa Hawley, Mackenzie Catron, Arturo Lichauco, Juan Cabrera-Luque, Tracy Yuen, David Rowitch & Vittorio Gallo in Nature Communications. Published online December 19 2016 doi:10.1038/ncomms13866

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]Children’s National Health System. “Sirt1 Regulates Proliferation and Regeneration of Glial Progenitor Cells After Injury.” NeuroscienceNews. NeuroscienceNews, 19 December 2016.
<https://neurosciencenews.com/glial-cell-injury-neurogenesis-sirt1-5772/>.[/cbtab][cbtab title=”APA”]Children’s National Health System. (2016, December 19). Sirt1 Regulates Proliferation and Regeneration of Glial Progenitor Cells After Injury. NeuroscienceNews. Retrieved December 19, 2016 from https://neurosciencenews.com/glial-cell-injury-neurogenesis-sirt1-5772/[/cbtab][cbtab title=”Chicago”]Children’s National Health System. “Sirt1 Regulates Proliferation and Regeneration of Glial Progenitor Cells After Injury.” https://neurosciencenews.com/glial-cell-injury-neurogenesis-sirt1-5772/ (accessed December 19, 2016).[/cbtab][/cbtabs]


Abstract

Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury

Regenerative processes in brain pathologies require the production of distinct neural cell populations from endogenous progenitor cells. We have previously demonstrated that oligodendrocyte progenitor cell (OPC) proliferation is crucial for oligodendrocyte (OL) regeneration in a mouse model of neonatal hypoxia (HX) that reproduces diffuse white matter injury (DWMI) of premature infants. Here we identify the histone deacetylase Sirt1 as a Cdk2 regulator in OPC proliferation and response to HX. HX enhances Sirt1 and Sirt1/Cdk2 complex formation through HIF1α activation. Sirt1 deacetylates retinoblastoma (Rb) in the Rb/E2F1 complex, leading to dissociation of E2F1 and enhanced OPC proliferation. Sirt1 knockdown in culture and its targeted ablation in vivo suppresses basal and HX-induced OPC proliferation. Inhibition of Sirt1 also promotes OPC differentiation after HX. Our results indicate that Sirt1 is an essential regulator of OPC proliferation and OL regeneration after neonatal brain injury. Therefore, enhancing Sirt1 activity may promote OL recovery after DWMI.

“Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury” by Beata Jablonska, Marcin Gierdalski, Li-Jin Chew, Teresa Hawley, Mackenzie Catron, Arturo Lichauco, Juan Cabrera-Luque, Tracy Yuen, David Rowitch & Vittorio Gallo in Nature Communications. Published online December 19 2016 doi:10.1038/ncomms13866

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.