How to Build a Brain

Summary: A new study sheds light on how our brains are constructed. Researchers say the study reveals how the balance of excitatory and inhibitory neurons in the cerebral cortex has remained constant over mammalian evolution.

Source: King’s College London.

Researchers at King’s College London have discovered a fundamental process by which brains are built, which may have profound implications for understanding neurodevelopmental conditions like autism and epilepsy.

The study, published in Nature and funded by the Wellcome Trust, also answers an evolutionary mystery about how the delicate balance between different types of brain cells might be maintained across species with vastly different brain sizes.

The cerebral cortex is the largest region of the human brain and is responsible for many of our advanced abilities such as learning, memory and our ability to plan future actions. The cerebral cortex contains two main types of brain cells: excitatory and inhibitory neurons, which can be more simply defined as ‘go’ and ‘no-go’ neurons.

Excitatory ‘go’ neurons process information and provide orders telling other neurons what to do. Inhibitory ‘no-go’ neurons restrict the activity of excitatory neurons so that they don’t all go at the same time. Too much ‘go’ leads to the over-firing of neurons seen in epilepsy, while too much ‘no-go’ causes cognitive problems.

The researchers have discovered how the correct balance is achieved in the number of ‘go’ and ‘no-go’ neurons by studying the brains of developing mice. Since the ratio of the two cell types in all mammals is remarkably similar, the findings are likely to apply to humans.

‘Like many fundamental things in nature, the process we have uncovered is elegant and likely very important,’ says senior author Professor Oscar Marín, from the Centre for Developmental Neurobiology at the Institute of Psychiatry, Psychology & Neuroscience (IoPPN).

‘This study fills a big gap in our understanding of how the brain is built, explaining quite simply how the balance of excitatory and inhibitory neurons in the cerebral cortex has remained constant as mammals have evolved. It is probable that this process has been critical in allowing human brains to expand.’

By manipulating brain cells in mice during a critical period of embryonic development, the researchers demonstrated that the number of ‘no-go’ neurons is adjusted once the number of ‘go’ neurons is established.

Co-lead author Dr Kinga Bercsenyi from the Marín laboratory at the IoPPN explains: ‘If we imagine brain activity as a conversation, neurons have to be connected to each other in order to talk. During the first two weeks after birth, ‘no-go’ neurons can sense if they are alone and are programmed to die if they cannot find ‘go’ neurons that are willing to talk to them.’

cerebral cortex slices of mice, humans and monkeys
Researchers at King’s College London have discovered a fundamental process behind development of the cerebral cortex. NeuroscienceNews.com image is credited to King’s College London.

The researchers found that ‘go’ neurons rescue their ‘no-go’ cousins from death by blocking the function of a protein called PTEN. Mutations in the gene coding for PTEN have been strongly linked to autism, suggesting that when PTEN is not functioning properly not enough ‘no-go’ neurons die, tipping the balance of cell types and causing problems in information processing in some autistic people.

Co-lead author Dr Fong Kuan Wong the Marín laboratory at the IoPPN says: ‘As well as finding a biological process that is fundamental to brain development, our findings suggest that disruptions to this process may be fundamental to neurodevelopmental disorders. Understanding how the balance of cell types in the cerebral cortex is disrupted in conditions like autism and epilepsy could potentially lead to new treatments.’

The researchers are now investigating the consequences of having too many ‘no-go’ neurons in mice, and how this might relate to human conditions like autism.

About this neuroscience research article

Funding: Study funded by Wellcome.

Source: Robin Bisson – King’s College London
Publisher: Organized by NeuroscienceNews.com.
Image Source: NeuroscienceNews.com image is credited to King’s College London.
Original Research: Abstract for “Pyramidal cell regulation of interneuron survival sculpts cortical networks” by Fong Kuan Wong, Kinga Bercsenyi, Varun Sreenivasan, Adrián Portalés, Marian Fernández-Otero & Oscar Marín in Nature. Published May 30 2018.
doi:10.1038/s41586-018-0139-6

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]King’s College London “How to Build a Brain.” NeuroscienceNews. NeuroscienceNews, 30 May 2018.
<https://neurosciencenews.com/brain-development-evolution-9182/>.[/cbtab][cbtab title=”APA”]King’s College London (2018, May 30). How to Build a Brain. NeuroscienceNews. Retrieved May 30, 2018 from https://neurosciencenews.com/brain-development-evolution-9182/[/cbtab][cbtab title=”Chicago”]King’s College London “How to Build a Brain.” https://neurosciencenews.com/brain-development-evolution-9182/ (accessed May 30, 2018).[/cbtab][/cbtabs]


Abstract

Pyramidal cell regulation of interneuron survival sculpts cortical networks

Complex neuronal circuitries such as those found in the mammalian cerebral cortex have evolved as balanced networks of excitatory and inhibitory neurons. Although the establishment of appropriate numbers of these cells is essential for brain function and behaviour, our understanding of this fundamental process is limited. Here we show that the survival of interneurons in mice depends on the activity of pyramidal cells in a critical window of postnatal development, during which excitatory synaptic input to individual interneurons predicts their survival or death. Pyramidal cells regulate interneuron survival through the negative modulation of PTEN signalling, which effectively drives interneuron cell death during this period. Our findings indicate that activity-dependent mechanisms dynamically adjust the number of inhibitory cells in nascent local cortical circuits, ultimately establishing the appropriate proportions of excitatory and inhibitory neurons in the cerebral cortex.

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.