A password will be e-mailed to you.

Body Clock and Gut Microbiota Work Together to Pack on Pounds

Summary: A new Science study sheds light on how the gut microbiota interacts with circadian rhythm to impact metabolism. Researchers say the finding could help explain why those who work night shifts have higher rates of metabolic diseases.

Source: UT Southwestern Medical Center.

UT Southwestern researchers have uncovered new clues about how gut bacteria and the body’s circadian clock work together to promote body fat accumulation.

In a mouse study that may someday lead to new strategies to fight obesity, the scientists found that the gut bacteria, or microbiome, regulate lipid (fat) uptake and storage by hacking into and changing the function of the circadian clocks in the cells that line the gut.

“These findings indicate a mechanism by which the intestinal microbiota regulate body composition and establish the circadian transcription factor NFIL3 as the essential molecular link among the microbiota, the circadian clock, and host metabolism,” said Dr. Lora Hooper, Chair of Immunology and lead author of the study published Sept. 1 in Science. Dr. Hooper, a Professor of Immunology and Microbiology, also holds an appointment in the Center for the Genetics of Host Defense and is a Howard Hughes Medical Institute Investigator.

“The human gut is teeming with trillions of bacteria that help us digest our food, protect us from infection, and produce certain vitamins. There is accumulating evidence that certain bacteria that live in our gut might predispose us to gain weight, especially when we consume a high-fat, high-sugar ‘Western-style’ diet,” said lead author Yuhao Wang, a graduate student in the Hooper laboratory.

The microbiome is considered an environmental factor that affects energy harvest and body fat accumulation – energy storage – in mammals, said Dr. Hooper, adding that little is known about the mechanisms that control the relationship between the microbiome and body composition. She has long kept a colony of germ-free mice – raised in a sterile environment – that lack microbiomes. Those mice provided one clue.

“Mice that lack a microbiome fare much better on a high-fat, Western-style diet than bacteria-bearing mice,” she said.

Many of the body’s metabolic pathways are synchronized with day-night cycles via the circadian clock. In mammals, the circadian clock is a collection of transcription factors present in every cell that drive rhythmic, 24-hour oscillations in the expression of genes that govern body processes such as metabolism.

In their experiments, the researchers compared germ-free and conventionally raised mice and also studied knockout mice genetically unable to make NFIL3 in the cells lining the intestines.

So how exactly does the gut microbiome “talk” to the intestinal lining to regulate fat uptake and storage through NFIL3? When the researchers studied this question, Dr. Hooper said, they uncovered an interesting twist, finding that the gut microbiome regulates lipid uptake by hacking into the circadian clocks that are present in the cells that line the gut.

The hacking affects the amplitude, or robustness, of how genes driving the lipid uptake and storage cycle are expressed. Germ-free mice lacking a microbiome thus have lower-than-average production of NFIL3, meaning that they take up and store less lipid and therefore remain lean, even on a high-fat diet, the scientists explained.

Image shows gut bacteria on a petri dish.

The microbiome is considered an environmental factor that affects energy harvest and body fat accumulation – energy storage – in mammals, said Dr. Hooper, adding that little is known about the mechanisms that control the relationship between the microbiome and body composition. NeuroscienceNews.com image is credited to Nicola Fawcett.

The body’s circadian clocks sense the cycles of day and night – which are closely linked to feeding times – and turn on and off the body’s metabolic machinery as needed. Even though gut cells are not directly exposed to light, their circadian clocks capture light cues from the visual and nervous systems and use them to regulate gene expression. The gut’s circadian clock helps to regulate the expression of NFIL3 and hence the lipid metabolic machinery that is controlled by NFIL3 in the intestinal lining.

“So what you have is a really fascinating system where two signals from the environment come in – the microbiome and the day-night changes in light – and converge on the gut lining to regulate how much lipid you take up from your diet and store as fat,” said Dr. Hooper, Director of the Walter M. and Helen D. Bader Center for Research on Arthritis and Autoimmune Diseases. She also holds the Jonathan W. Uhr, M.D. Distinguished Chair in Immunology and is a Nancy Cain and Jeffrey A. Marcus Scholar in Medical Research, in Honor of Dr. Bill S. Vowell.

“Our work provides a deeper understanding of how the gut microbiota interacts with the circadian clock, and how this interaction impacts metabolism,” Dr. Hooper continued. “It could also help to explain why people who work the night shift or travel abroad frequently – which disrupts their circadian clocks – have higher rates of metabolic diseases such as obesity, diabetes, and cardiovascular disease.”

However, she cautioned, more research is required to determine if a similar mechanism regulates fat uptake in the human intestinal lining.

About this neuroscience research article

UTSW co-authors include Immunology postdoctoral fellow Dr. Zheng Kuang; Dr. Xiaofei Yu, a former Immunology graduate student now at Rockefeller University; and Kelly Ruhn, a research technician. A researcher with dual appointments at the RIKEN Yokohama Institute and Tokyo University of Science in Japan also contributed to this work.

Funding: The study received support from the National Institutes of Health, the Burroughs Wellcome Fund, the Welch Foundation, and the Howard Hughes Medical Institute.

Source: Deborah Wormser – UT Southwestern Medical Center
Image Source: NeuroscienceNews.com image is credited to Nicola Fawcett and is licensed CC BY SA 4.0.
Original Research: Abstract for “The intestinal microbiota regulates body composition through NFIL3 and the circadian clock” by Yuhao Wang, Zheng Kuang, Xiaofei Yu, Kelly A. Ruhn, Masato Kubo, and Lora V. Hooper in Science. Published online September 1 2017 doi:10.1126/science.aan0677

Cite This NeuroscienceNews.com Article
UT Southwestern Medical Center “Body Clock and Gut Microbiota Work Together to Pack on Pounds.” NeuroscienceNews. NeuroscienceNews, 12 September 2017.
<http://neurosciencenews.com/microbiota-circadian-clock-weight-7468/>.
UT Southwestern Medical Center (2017, September 12). Body Clock and Gut Microbiota Work Together to Pack on Pounds. NeuroscienceNew. Retrieved September 12, 2017 from http://neurosciencenews.com/microbiota-circadian-clock-weight-7468/
UT Southwestern Medical Center “Body Clock and Gut Microbiota Work Together to Pack on Pounds.” http://neurosciencenews.com/microbiota-circadian-clock-weight-7468/ (accessed September 12, 2017).

Abstract

The intestinal microbiota regulates body composition through NFIL3 and the circadian clock

The intestinal microbiota has been identified as an environmental factor that markedly affects energy storage and body-fat accumulation in mammals, yet the underlying mechanisms remain unclear. Here we show that the microbiota regulates body composition through the circadian transcription factor NFIL3. Nfil3 transcription oscillates diurnally in intestinal epithelial cells, and the amplitude of the circadian oscillation is controlled by the microbiota through group 3 innate lymphoid cells, STAT3 (signal transducer and activator of transcription 3), and the epithelial cell circadian clock. NFIL3 controls expression of a circadian lipid metabolic program and regulates lipid absorption and export in intestinal epithelial cells. These findings provide mechanistic insight into how the intestinal microbiota regulates body composition and establish NFIL3 as an essential molecular link among the microbiota, the circadian clock, and host metabolism.

“The intestinal microbiota regulates body composition through NFIL3 and the circadian clock” by Yuhao Wang, Zheng Kuang, Xiaofei Yu, Kelly A. Ruhn, Masato Kubo, and Lora V. Hooper in Science. Published online September 1 2017 doi:10.1126/science.aan0677

Feel free to share this Neuroscience News.
Join our Newsletter
Sign up to receive the latest neuroscience headlines and summaries sent to your email daily from NeuroscienceNews.com
We hate spam. Your email address will not be sold or shared with anyone else.
No more articles