Mars Bound Astronauts Face Chronic Dementia Risk From Galactic Cosmic Ray Exposure

Summary: A new study raises question about the effect extended space flights will have on long term brain health.

Source: UC Irvine.

UCI study raises questions about long-term brain health after extended spaceflights.

Will astronauts traveling to Mars remember much of it? That’s the question concerning University of California, Irvine scientists probing a phenomenon called “space brain.”

UCI’s Charles Limoli and colleagues found that exposure to highly energetic charged particles – much like those found in the galactic cosmic rays that will bombard astronauts during extended spaceflights – causes significant long-term brain damage in test rodents, resulting in cognitive impairments and dementia.

Their study appears today in Nature’s Scientific Reports. It follows one last year showing somewhat shorter-term brain effects of galactic cosmic rays. The current findings, Limoli said, raise much greater alarm.

“This is not positive news for astronauts deployed on a two-to-three-year round trip to Mars,” said the professor of radiation oncology in UCI’s School of Medicine. “The space environment poses unique hazards to astronauts. Exposure to these particles can lead to a range of potential central nervous system complications that can occur during and persist long after actual space travel – such as various performance decrements, memory deficits, anxiety, depression and impaired decision-making. Many of these adverse consequences to cognition may continue and progress throughout life.”

For the study, rodents were subjected to charged particle irradiation (fully ionized oxygen and titanium) at the NASA Space Radiation Laboratory at New York’s Brookhaven National Laboratory and then sent to Limoli’s UCI lab.

Six months after exposure, the researchers still found significant levels of brain inflammation and damage to neurons. Imaging revealed that the brain’s neural network was impaired through the reduction of dendrites and spines on these neurons, which disrupts the transmission of signals among brain cells. These deficiencies were parallel to poor performance on behavioral tasks designed to test learning and memory.

In addition, the Limoli team discovered that the radiation affected “fear extinction,” an active process in which the brain suppresses prior unpleasant and stressful associations, as when someone who nearly drowned learns to enjoy water again.

“Deficits in fear extinction could make you prone to anxiety,” Limoli said, “which could become problematic over the course of a three-year trip to and from Mars.”

Most notably, he said, these six-month results mirror the six-week post-irradiation findings of a 2015 study he conducted that appeared in the May issue of Science Advances.

Similar types of more severe cognitive dysfunction are common in brain cancer patients who have received high-dose, photon-based radiation treatments. In other research, Limoli examines the impact of chemotherapy and cranial irradiation on cognition.

Image shows an astronaut.
Similar types of more severe cognitive dysfunction are common in brain cancer patients who have received high-dose, photon-based radiation treatments. In other research, Limoli examines the impact of chemotherapy and cranial irradiation on cognition. NeuroscienceNews.com image is for illustrative purposes only.

While dementia-like deficits in astronauts would take months to manifest, he said, the time required for a mission to Mars is sufficient for such impairments to develop. People working for extended periods on the International Space Station, however, do not face the same level of bombardment with galactic cosmic rays because they are still within the Earth’s protective magnetosphere.

Limoli’s work is part of NASA’s Human Research Program. Investigating how space radiation affects astronauts and learning ways to mitigate those effects are critical to further human exploration of space, and NASA needs to consider these risks as it plans for missions to Mars and beyond.

Partial solutions are being explored, Limoli noted. Spacecraft could be designed to include areas of increased shielding, such as those used for rest and sleep. However, these highly energetic charged particles will traverse the ship nonetheless, he added, “and there is really no escaping them.”

Preventive treatments offer some hope. Limoli’s group is working on pharmacological strategies involving compounds that scavenge free radicals and protect neurotransmission.

About this neurology research article

Vipan Kumar Parihar, Barrett Allen, Chongshan Caressi, Katherine Tran, Esther Chu, Stephanie Kwok, Nicole Chmielewski, Janet Baulch, Erich Giedzinski and Munjal Acharya of UCI and Richard Britten of Eastern Virginia Medical School contributed to the study, which NASA supported through grants NNX13AK70G, NNX14AE73G, NNX13AD59G, NNX10AD59G, UARC NAS2-03144 and NNX15AI22G.

Funding: NASA funded this study.

Source: Tom Vasich – UC Irvine
Image Source: NeuroscienceNews.com image is in the public domain.
Original Research: Full open access research for “Cosmic radiation exposure and persistent cognitive dysfunction” by Vipan K. Parihar, Barrett D. Allen, Chongshan Caressi, Stephanie Kwok, Esther Chu, Katherine K. Tran, Nicole N. Chmielewski, Erich Giedzinski, Munjal M. Acharya, Richard A. Britten, Janet E. Baulch and Charles L. Limoli in Scientific Reports. Published online October 10 2016 doi:10.1038/srep34774

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]UC Irvine. “Mars Bound Astronauts Face Chronic Dementia Risk From Galactic Cosmic Ray Exposure.” NeuroscienceNews. NeuroscienceNews, 10 October 2016.
<https://neurosciencenews.com/astronaut-dementia-mars-radiation-5250/>.[/cbtab][cbtab title=”APA”]UC Irvine. (2016, October 10). Mars Bound Astronauts Face Chronic Dementia Risk From Galactic Cosmic Ray Exposure. NeuroscienceNews. Retrieved October 10, 2016 from https://neurosciencenews.com/astronaut-dementia-mars-radiation-5250/[/cbtab][cbtab title=”Chicago”]UC Irvine. “Mars Bound Astronauts Face Chronic Dementia Risk From Galactic Cosmic Ray Exposure.” https://neurosciencenews.com/astronaut-dementia-mars-radiation-5250/ (accessed October 10, 2016).[/cbtab][/cbtabs]


Abstract

Cosmic radiation exposure and persistent cognitive dysfunction

The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain.

“Cosmic radiation exposure and persistent cognitive dysfunction” by Vipan K. Parihar, Barrett D. Allen, Chongshan Caressi, Stephanie Kwok, Esther Chu, Katherine K. Tran, Nicole N. Chmielewski, Erich Giedzinski, Munjal M. Acharya, Richard A. Britten, Janet E. Baulch and Charles L. Limoli in Scientific Reports. Published online October 10 2016 doi:10.1038/srep34774

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.