Immunological Memory in the Brain

Summary: Researchers report inflammation reactions can cause long term alterations to immune cells in the brain which can influence the progression of neurodegenerative disorders later in life.

Source: DZNE.

Inflammatory reactions can change the brain’s immune cells in the long term – meaning that these cells have an ‘immunological memory’. This memory may influence the progression of neurological disorders that occur later in life, and is therefore a previously unknown factor that could influence the severity of these diseases. Scientists at the German Center for Neurodegenerative Diseases (DZNE), the Hertie Institute for Clinical Brain Research (HIH), and the University of Tuebingen report on this in the journal Nature. Their study is the result of a collaborative effort also involving re-searchers from Goettingen, Bonn, and Freiburg.

Microglia are immune cells that only occur in the brain. They protect the brain by cleansing it of intruders and toxic substances. However, in certain situations they can also cause damage. Therefore, they have long been suspected of playing a central role in neurodegenerative diseases.

As microglia are very long-lived, the scientists were keen to find out whether environmental factors change these immune cells over time and what effect this can have on brain health. “Epidemiological studies have shown that infectious diseases and inflammation suffered during a life-time can affect the severity of Alzheimer’s disease much later in life. We therefore asked ourselves whether an immunological memory in these long-lived microglia could be communicating this risk,” explains Dr. Jonas Neher, head of the current study and a scientist at the DZNE and the HIH.

Stimulated immune reaction

In order to address this question, Neher and colleagues triggered in-flammation in mice, outside their brains; it was already known that such an inflammation can stimulate an immune reaction in the brain. However, it was not clear whether microglia might be able to remember a previous inflammation. As it turned out: Depending on how often the scientists repeated this process, they were able to induce two different states in the microglia: “training” and “tolerance”. The first inflammatory stimulus trained the microglia, causing them to react more strongly to the second. However, after a fourth stimulus, tolerance had occurred and the microglia barely responded.

Next, the researchers investigated how microglia training and tolerance affected the formation of amyloid plaques in the long term. Such “plaques” are characteristic toxic deposits that accumulate in the brains of patients with Alzheimer’s disease. In a mouse model of Alzheimer’s pathology, the scientists observed that trained microglia amplified the formation of plaques even months after their immunological memory had been triggered, thus causing the disease to become more severe. In contrast, tolerant microglia reduced plaque load. The scientists also no-ticed similar effects in a mouse model of stroke.

Changes in DNA

In order to understand these effects more precisely, Neher and coworkers investigated epigenetic changes in the microglia, i.e. chemical modifications to the DNA or its packaging proteins that cause certain genes to become more or less active. As epigenetic modifications are very stable, the researchers saw in them a possible cause for the long-term behavioral changes exhibited by the microglia. This hypothesis turned out to be correct: even many months after the initial immune stimulus, both the trained and the tolerant microglia showed specific epigenetic changes and corresponding differences in gene activation. This molecular reprogramming changed important functions in the microglia, such as their ability to remove amyloid plaques. And this affected Alzheimer’s pathology.

brain
As microglia are very long-lived, the scientists were keen to find out whether environmental factors change these immune cells over time and what effect this can have on brain health. NeuroscienceNews.com image is in the public domain.


Consequences for neurodegenerative diseases?

“It is possible that also in humans, inflammatory diseases that primarily develop outside the brain could trigger epigenetic reprogramming inside the brain,” says Neher. Both infections and diseases such as diabetes or arthritis are associated with inflammatory reactions and are known risk factors for Alzheimer’s disease. The brain’s immunological memory – epigenetically modified microglia – is one possible explanation for this effect. Therefore, Neher and colleagues are now investigating the condi-tions under which microglia undergo epigenetic changes in humans and looking at the therapeutic possibilities that may arise from this.

About this neuroscience research article

Funding: The work was supported by the Studienstiftung des Deutschen Volkes, Hertie Foundation, Neuroinflammation in Neurodegeneration, Sobek-Stiftung, German Research Foundation, European Research Council, Fortüne Program, Fritz Thyssen Foundation, Paul G. Allen Family Foundation.

Source: Dirk Förger – DZNE
Publisher: Organized by NeuroscienceNews.com.
Image Source: NeuroscienceNews.com image is in the public domain.
Original Research: Abstract for “Innate immune memory in the brain shapes neurological disease hallmarks” by Ann-Christin Wendeln, Karoline Degenhardt, Lalit Kaurani, Michael Gertig, Thomas Ulas, Gaurav Jain, Jessica Wagner, Lisa M. Häsler, Katleen Wild, Angelos Skodras, Thomas Blank, Ori Staszewski, Moumita Datta, Tonatiuh Pena Centeno, Vincenzo Capece, Md. Rezaul Islam, Cemil Kerimoglu, Matthias Staufenbiel, Joachim L. Schultze, Marc Beyer, Marco Prinz, Mathias Jucker, André Fischer & Jonas J. Neher in Nature. Published April 11 2018,
doi:10.1038/s41586-018-0023-4

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]DZNE “Immunological Memory in the Brain.” NeuroscienceNews. NeuroscienceNews, 11 April 2018.
<https://neurosciencenews.com/immunological-memory-brain-8764/>.[/cbtab][cbtab title=”APA”]DZNE (2018, April 11). Immunological Memory in the Brain. NeuroscienceNews. Retrieved April 11, 2018 from https://neurosciencenews.com/immunological-memory-brain-8764/[/cbtab][cbtab title=”Chicago”]DZNE “Immunological Memory in the Brain.” https://neurosciencenews.com/immunological-memory-brain-8764/ (accessed April 11, 2018).[/cbtab][/cbtabs]


Abstract

Innate immune memory in the brain shapes neurological disease hallmarks

Innate immune memory is a vital mechanism of myeloid cell plasticity that occurs in response to environmental stimuli and alters subsequent immune responses. Two types of immunological imprinting can be distinguished—training and tolerance. These are epigenetically mediated and enhance or suppress subsequent inflammation, respectively. Whether immune memory occurs in tissue-resident macrophages in vivo and how it may affect pathology remains largely unknown. Here we demonstrate that peripherally applied inflammatory stimuli induce acute immune training and tolerance in the brain and lead to differential epigenetic reprogramming of brain-resident macrophages (microglia) that persists for at least six months. Strikingly, in a mouse model of Alzheimer’s pathology, immune training exacerbates cerebral β-amyloidosis and immune tolerance alleviates it; similarly, peripheral immune stimulation modifies pathological features after stroke. Our results identify immune memory in the brain as an important modifier of neuropathology.

Trial Registration clinicaltrials.gov Identifier: NCT01407094

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.