Experimental PET scan detects abnormal tau protein in brains of living former NFL players

Summary: PET imaging of former NFL players who exhibited cognitive decline and psychiatric symptoms linked to CTE showed higher levels of tau in areas of the brain associated with the neurodegenerative disease.

Source: Boston University School of Medicine

Using an experimental positron emission tomography (PET) scan, researchers have found elevated amounts of abnormal tau protein in brain regions affected by chronic traumatic encephalopathy (CTE) in a small group of living former National Football League (NFL) players with cognitive, mood and behavior symptoms. The study was published online in the New England Journal of Medicine.

The researchers also found the more years of tackle football played (across all levels of play), the higher the tau protein levels detected by the PET scan. However, there was no relationship between the tau PET levels and cognitive test performance or severity of mood and behavior symptoms.

“The results of this study provide initial support for the flortaucipir PET scan to detect abnormal tau from CTE during life. However, we’re not there yet,” cautioned corresponding author Robert Stern, PhD, professor of neurology, neurosurgery and anatomy and neurobiology at Boston University School of Medicine (BUSM). “These results do not mean that we can now diagnose CTE during life or that this experimental test is ready for use in the clinic.”

CTE is a neurodegenerative disease that has been associated with a history of repetitive head impacts, including those that may or may not be associated with concussion symptoms in American football players. At this time, CTE can only be diagnosed after death by a neuropathological examination, with the hallmark findings of the build-up of an abnormal form of tau protein in a specific pattern in the brain. Like Alzheimer’s disease (AD), CTE has been suggested to be associated with a progressive loss of brain cells. In contrast to AD, the diagnosis of CTE is based in part on the pattern of tau deposition and a relative lack of amyloid plaques.

The study was conducted in Boston and Arizona by a multidisciplinary group of researchers from BUSM, Banner Alzheimer’s Institute, Mayo Clinic Arizona, Brigham and Women’s Hospital and Avid Radiopharmaceuticals. Experimental flortaucipir PET scans were used to assess tau deposition and FDA-approved florbetapir PET scans were used to assess amyloid plaque deposition in the brains of 26 living former NFL players with cognitive, mood, and behavior symptoms (ages 40-69) and a control group of 31 same-age men without symptoms or history of traumatic brain injury. Results showed that the tau PET levels were significantly higher in the former NFL group than in the controls, and the tau was seen in the areas of the brain which have been shown to be affected in post-mortem cases of neuropathologically diagnosed CTE.

Interestingly, the former player and control groups did not differ in their amyloid PET measurements. Indeed, only one former player had amyloid PET measurements comparable to those seen in Alzheimer’s disease.

This is a drawing of a football player
CTE is a neurodegenerative disease that has been associated with a history of repetitive head impacts, including those that may or may not be associated with concussion symptoms in American football players. The image is in the public domain.

“Our findings suggest that mild cognitive, emotional, and behavioral symptoms observed in athletes with a history of repetitive impacts are not attributable to AD, and they provide a foundation for additional research studies to advance the scientific understanding, diagnosis, treatment, and prevention of CTE in living persons, said co-author, Eric Reiman, MD, Executive Director of Banner Alzheimer’s Institute in Phoenix, Arizona. “More research is needed to draw firm conclusions, and contact sports athletes, their families, and other stakeholders are waiting.

With support from NIH, the authors are working with additional researchers to conduct a longitudinal study called the DIAGNOSE CTE Research Project in former NFL players, former college football players, and persons without a history of contact sports play to help address these and other important questions. Initial results of that study are expected in early 2020.

Funding: Funding for this study was provided by grants from Avid Radiopharmaceuticals (a wholly-owned subsidiary of Eli Lilly and Company), the National Institutes of Health (grant numbers R01NS078337, U19AG024904, 1UL1TR001430); the State of Arizona; and the US Department of Defense (grant numbers W81XWH-13-2-0063, W81XWH-13-2-0064, W81XWH-14-1-0462). All flortaucipir and florbetapir PET radiotracers were provided by Avid Radiopharmaceuticals.

About this neuroscience research article

Source:
Boston University School of Medicine
Media Contacts:
Gina DiGravio – Boston University School of Medicine
Image Source:
The image is in the public domain.

Original Research: Closed access
“Tau Positron-Emission Tomography in Former National Football League Players” Robert A. Stern, Ph.D New England Journal of Medicine doi:10.1056/NEJMoa1900757

Abstract

Tau Positron-Emission Tomography in Former National Football League Players

BACKGROUND
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease that has been associated with a history of repetitive head impacts. The neuropathological diagnosis is based on a specific pattern of tau deposition with minimal amyloid-beta deposition that differs from other disorders, including Alzheimer’s disease. The feasibility of detecting tau and amyloid deposition in the brains of living persons at risk for CTE has not been well studied.

METHODS
We used flortaucipir positron-emission tomography (PET) and florbetapir PET to measure deposition of tau and amyloid-beta, respectively, in the brains of former National Football League (NFL) players with cognitive and neuropsychiatric symptoms and in asymptomatic men with no history of traumatic brain injury. Automated image-analysis algorithms were used to compare the regional tau standardized uptake value ratio (SUVR, the ratio of radioactivity in a cerebral region to that in the cerebellum as a reference) between the two groups and to explore the associations of SUVR with symptom severity and with years of football play in the former-player group.

RESULTS
A total of 26 former players and 31 controls were included in the analysis. The mean flortaucipir SUVR was higher among former players than among controls in three regions of the brain: bilateral superior frontal (1.09 vs. 0.98; adjusted mean difference, 0.13; 95% confidence interval [CI], 0.06 to 0.20; P<0.001), bilateral medial temporal (1.23 vs. 1.12; adjusted mean difference, 0.13; 95% CI, 0.05 to 0.21; P<0.001), and left parietal (1.12 vs. 1.01; adjusted mean difference, 0.12; 95% CI, 0.05 to 0.20; P=0.002). In exploratory analyses, the correlation coefficients in these three regions between the SUVRs and years of play were 0.58 (95% CI, 0.25 to 0.79), 0.45 (95% CI, 0.07 to 0.71), and 0.50 (95% CI, 0.14 to 0.74), respectively. There was no association between tau deposition and scores on cognitive and neuropsychiatric tests. Only one former player had levels of amyloid-beta deposition similar to those in persons with Alzheimer’s disease.

CONCLUSIONS
A group of living former NFL players with cognitive and neuropsychiatric symptoms had higher tau levels measured by PET than controls in brain regions that are affected by CTE and did not have elevated amyloid-beta levels. Further studies are needed to determine whether elevated CTE-associated tau can be detected in individual persons. (Funded by Avid Radiopharmaceuticals and others.)

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.