Researchers identify how taupT217, a toxic form of the Tau protein, spreads through the brain as Alzheimer's disease progresses.
An inflammatory trigger like one present during viral infections is elevated in those with Alzheimer's disease and progressive supranuclear palsy (PSP).
A newly developed blood test can detect brain-derived tau (BD-tau), a biomarker of Alzheimer's disease neurodegeneration.
Dampening retromer activity slows down the trafficking of tau in neurodegenerative disorders, a new study reports.
A new collection of articles explores mapping brain overexcitability that underpins the dysregulation of vigilance, sleep-wake cycles, and validating effective biomarkers for Alzheimer's disease.
Study reveals how the Alzheimer's associated Tau protein changes from normal to a diseased state.
Researchers reveal the critical role the p62 gene plays in the selective autophagy of tau oligomers.
Fragmented tau that accumulates in neurons in those with Alzheimer's disease may be a new target for drugs to treat the neurodegenerative disease.
An abundance of newly acquired mutations in the mutations that occur at an accelerated speed is a telling pattern of Alzheimer's disease, researchers report.
mRNA decay may facilitate tau-induced damage to the brain and associated apoptosis that contributes to a range of neurodegenerative disorders. Researchers found the mechanism can be altered pharmacologically, providing a new target for the development of therapeutics to prevent or slow the progression of some neurodegenerative disorders.
Degeneration of neurons associated with wakefulness, and not a lack of sleep, makes Alzheimer's patients more drowsy. The degeneration of these neurons is caused by the tau protein. In PSP, the damage to the neurons was associated with symptoms of sleep deprivation.
Alpha2-NKA, a protein that drives toxicity in astrocytes, was discovered in higher levels of brain samples from people who died of PSP, Alzheimer's and other tau-related neurodegenerative disorders. Treatment with an FDA-approved drug called digoxin may suppress the inflamed astrocytes and halt disease progression for those with tauopathy disorders.