How Gene Expression Controls Synaptic Plasticity in the Aging Human Brain

Summary: M1 muscarinic acetylcholine receptor (mAChR) dependent LTP and LTD share a common AMPA trafficking pathway. Either the upregulation of neurotransmitter receptor genes or suppression of the downregulation could improve synaptic dysfunction associated with age-related neurodegeneration. The findings could assist in the creation of new therapies for Alzheimer’s disease that target synaptic plasticity.

Source: Okayama University

Scientific evidence shows how the cognitive decline in Alzheimer’s disease (AD) is caused by the buildup of amyloid beta proteins, which promote synaptic malfunction.

One of the neuropathological features in the brains of patients with AD is the degeneration of the basal forebrain cholinergic neurons, leading to a decrease in the number of cholinergic projections to the hippocampus. As a symptomatic treatment of AD, cholinergic neurotransmission is enhanced by the use of certain drugs, known as acetylcholinesterase inhibitors.

For better prevention and treatment of cognitive disorders like AD and schizophrenia, it is necessary to understand how acetylcholine regulates synaptic transmissions.

Higher brain functions, like learning and memory, are partly regulated by signaling through the M1 muscarinic acetylcholine receptor (mAChR). The mAChR also induces long-term potentiation (LTP) and long-term depression (LTD) of excitatory synaptic transmission in the hippocampus.

During hippocampus-controlled learning activities, extracellular levels of acetylcholine (Ach) increase by 4 times in the hippocampus, driven by mAChR signal transmission. Activation of the mAChR by agonists (activator chemicals) is known to induce LTP and LTD in the hippocampus, but the underlying molecular mechanisms are not well understood.

To study these molecular mechanisms, scientists from Japan have recently designed a model to track hippocampal synaptic plasticity.

Their study has been published in volume 26 issue 3 of iScience.  

Associate Professor Tomonari Sumi from Okayama University, Japan, who led the study, explains, “Here, we propose the hypothesis that M1 mAChR-dependent LTP and LTD share the common a-amino-3-hydroxy5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking pathway associated with NMDAR dependent LTP and LTD.” 

For the hippocampal neurons, an AMPA receptor (AMPAR) trafficking model was proposed to simulate N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity. The findings of this study prove the validity of the hypothesis that the mAChR-dependent LTP and LTD share a common AMPAR trafficking pathway.

The difference between the two pathways is that in the M1-mAChR activation, Ca2+ ions stored in the endoplasmic reticulum of the neurons are released into the spine cytosol. A competition between Ca2+ dependent exocytosis and endocytosis regulates LTP and LPD. 

“Therefore, it can be concluded that the M1 mAChR-dependent induction of LTP and LTD shares the common AMPAR trafficking pathway with NMDAR-dependent synaptic plasticity, and new gene expression is not necessary, at least in the early stages of LTP and LTD.” says Kouji Harada from the Center for IT-Based Education, Toyohashi University of Technology.

This shows the outline of a head
During hippocampus-controlled learning activities, extracellular levels of acetylcholine (Ach) increase by 4 times in the hippocampus, driven by mAChR signal transmission. Activation of the mAChR by agonists (activator chemicals) is known to induce LTP and LTD in the hippocampus, but the underlying molecular mechanisms are not well understood. Image is in the public domain

These findings show how the reduction in the number of AMPARs due to varying gene expression levels affects the induction of LTP and LTD. These results will be useful to understand the dominant factors resulting in alterations of LTP and LTD in animal models of AD, which can ultimately be greatly helpful for the development of AD therapy targeting synaptic plasticity for humans.

Aging of the human brain causes a marked reduction in the expression of a number of neurotransmitter receptors, like GluA1, which induces the integration of AMPA receptors inside synaptic membranes. The AMPAR trafficking model shows that alterations in LTP and LTD observed in AD could be due to age-related reduction in AMPAR expression levels.

 “Taken together, these observations suggest that either upregulation of neurotransmitter receptor genes or suppression of the downregulation could improve synaptic dysfunction during AD.” says Dr. Sumi.

About this synaptic plasticity research news

Author: Ryoko Mimura
Source: Okayama University
Contact: Ryoko Mimura – Okayama University
Image: The image is in the public domain

Original Research: Open access.
Muscarinic acetylcholine receptor-dependent and NMDA receptor-dependent LTP and LTD share the common AMPAR trafficking pathway” by Tomonari Sumi et al. iScience


Abstract

Muscarinic acetylcholine receptor-dependent and NMDA receptor-dependent LTP and LTD share the common AMPAR trafficking pathway

Highlights

  • M1 mAChR- and NMDAR-dependent LTP and LTD share the common AMPAR trafficking pathway
  • Competition between Ca2+-dependent exocytosis and endocytosis regulates LTP and LTD
  • A simple reduction in the number of AMPARs weakens LTP and strengthens LTD
  • The synaptic dysfunction is correlated with cognitive decline in Alzheimer’s disease

Summary

The forebrain cholinergic system promotes higher brain function in part by signaling through the M1 muscarinic acetylcholine receptor (mAChR). Long-term potentiation (LTP) and long-term depression (LTD) of excitatory synaptic transmission in the hippocampus are also induced by mAChR. An AMPA receptor (AMPAR) trafficking model for hippocampal neurons has been proposed to simulate N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity in the early phase.

In this study, we demonstrated the validity of the hypothesis that the mAChR-dependent LTP/LTD shares a common AMPAR trafficking pathway associated with NMDAR-dependent LTP/LTD.

However, unlike NMDAR, Ca2+ influx into the spine cytosol occurs owing to the Ca2+ stored inside the ER and is induced via the activation of inositol 1,4,5-trisphosphate (IP3) receptors during M1 mAChR activation.

Moreover, the AMPAR trafficking model implies that alterations in LTP and LTD observed in Alzheimer’s disease could be attributed to age-dependent reductions in AMPAR expression levels.

Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.