Changes in Abundance of Mouse Gut Bacteria Connected to Circadian Rhythm

By now, the old saw, “You are what you eat,” has been well-used in describing the microbiome. However axiomatic that phrase may be, a new study has also found that who and when that consumption is done can affect microbiome make-up. Changes in the abundance of mouse gut bacteria, over a 24-hour cycle, particularly in females, is tied to rhythms in the internal clock, according to work published online this week in the Early Edition of the Proceedings of the National Academy of Science, by researchers from the Perelman School of Medicine at the University of Pennsylvania.

In mammals, most physiological, metabolic, and behavioral processes follow a daily, or circadian, rhythm, adapting to changing light in the environment. Recent studies of the mouse microbiome have found that the microbes that live in mammals have their own circadian behavior, which has been shown to be linked to host feeding time. However, how this all ties together has not been fully clarified.

Doctoral student Xue Liang, working with the labs of authors Garret A. FitzGerald, MD, FRS, chair of the department of Systems Pharmacology and Translational Therapeutics, and Frederic Bushman, PhD, chair of the department of Microbiology, analyzed circadian rhythms in abundance and type of microbiota in the gut and feces of mice using genetic sequencing. They found that the absolute abundance of Bacteroidetes, a large group of rod-shaped bacteria common in the gut and skin of animals, and relative species make-up of the microbiome, changed over a 24-hour cycle. What’s more, this rhythmicity was more pronounced in female mice.

Normally, during the daytime, when the mice are resting and consuming less food, Bacteroidetes are predominant, reaching the highest abundance toward the end of the light phase. The influence of food may reflect the varying nutrient availability to bacteria. Components in host diet and mucus in the intestines provide carbon sources to the bacteria. Several strains of Bacteroidetes have evolved to use host mucous carbon when dietary carbon is in short supply, which may partially explain the blooming of Bacteroidetes in the resting phase.

This image shows a wood mouse.
Normally, during the daytime, when the mice are resting and consuming less food, Bacteroidetes are predominant, reaching the highest abundance toward the end of the light phase. The influence of food may reflect the varying nutrient availability to bacteria. This image is for illustrative purposes only. Image credit: Rasbak.

But how are internal clock and sex involved in setting up these patterns? When the Penn team disrupted the clock gene Bmal1, any trace of a 24-hour cycle in the composition of fecal microbiota in both male and female mice was eliminated. Bmal1 deletion also induced changes in bacterial abundances in feces, with differential effects based on sex. Although microbiota in both males and females exhibited circadian rhythmicity, females showed more significant oscillation than males. However, the effect of host sex is secondary to the host circadian clock in shaping the rhythmicity, because Bmal1 deletion abolished the rhythmicity irrespective of sex.

“Although host behavior, such as time of feeding, is recognized to play a large role in explaining these intertwined cycles, we show that sex interacts with the circadian clock, and these factors collectively shape the circadian rhythmicity and composition of the fecal microbes in mice,” says first author Liang. “Our findings suggest the need to consider circadian factors and host gender in the design of microbiome studies and highlight the importance of analyzing absolute abundance in understanding the microbiome and its influence on physiology, and possibly inflammatory bowel disease.”

[divider]About this neuroscience research[/divider]

Funding: This work was supported by the National Heart, Lung, and Blood Institute (1U54HL117798).

Source: Karen Kreeger – Perelman School of Medicine
Image Source: The image is credited to Rasbak and is licensed CC BY-SA 3.0
Original Research: Full open access research (PDF) for “Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock” by Xue Liang, Frederic D. Bushman, and Garret A. FitzGerald in PNAS. Published online August 34 2015 doi:10.1073/pnas.1501305112


Abstract

Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock

In mammals, multiple physiological, metabolic, and behavioral processes are subject to circadian rhythms, adapting to changing light in the environment. Here we analyzed circadian rhythms in the fecal microbiota of mice using deep sequencing, and found that the absolute amount of fecal bacteria and the abundance of Bacteroidetes exhibited circadian rhythmicity, which was more pronounced in female mice. Disruption of the host circadian clock by deletion of Bmal1, a gene encoding a core molecular clock component, abolished rhythmicity in the fecal microbiota composition in both genders. Bmal1 deletion also induced alterations in bacterial abundances in feces, with differential effects based on sex. Thus, although host behavior, such as time of feeding, is of recognized importance, here we show that sex interacts with the host circadian clock, and they collectively shape the circadian rhythmicity and composition of the fecal microbiota in mice.

“Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock” by Xue Liang, Frederic D. Bushman, and Garret A. FitzGerald in PNAS. Published online August 34 2015 doi:10.1073/pnas.1501305112

[divider]Feel free to share this neuroscience article.[/divider]

Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive the latest neuroscience headlines and summaries sent to your email daily from NeuroscienceNews.com
We hate spam and only use your email to contact you about newsletters. We do not sell email addresses. You can cancel your subscription any time.