Paraplegic Rat Walks Again After Therapy, and Now We Know Why

Summary: Using electrochemical stimulation and robot assisted rehabilitation techniques, researchers restore walking ability in a paraplegic rat. The study reports reorganization of neural branching in the reticular formation leads to new connections and is key to motor skill recovery.

Source: EPFL.

With the help of robot-assisted rehabilitation and electrochemical spinal cord stimulation, rats with clinically-relevant spinal cord injury regain control of their otherwise paralyzed limbs. But how do brain commands – about walking, swimming and stair-climbing – bypass the injury and still reach the spinal cord to execute these complex tasks? EPFL scientists have observed for the first time that the brain reroutes task-specific motor commands through alternative pathways originating in the brainstem and projecting to the spinal cord. The therapy triggers the growth of new connections from the motor cortex into the brainstem and from the brainstem into the spinal cord, thus reconnecting the brain with the spinal cord below the injury.

The results are published in Nature Neuroscience March 19th.

“The brain develops new anatomical connections through regions of the nervous system that are still intact after injury,” says EPFL scientist Grégoire Courtine. “The brain essentially rewires circuits from the cerebral cortex, brainstem and spinal cord–an extensive rewiring that we exposed to unprecedented detail using next-generation whole brain-spinal cord microscopy.”

“The recovery is not spontaneous,” furthers EPFL scientist and lead author Léonie Asboth. “You need to engage the animals in an intense rehabilitation therapy for the rewiring to take place. In our case, this therapy involves electrochemical stimulation of the spinal cord and active physiotherapy in a smart assistive harness.”

In Courtine’s lab, rats with a contusion that leads to complete paraplegia learn to walk again with the help of therapy that combines electrochemical stimulation of the spinal cord and robot-assisted rehabilitation. The rat’s spinal cord is first stimulated with pharmaceuticals, then electrically stimulated below the injury to activate muscles in the legs. Combined with therapy in a smart harness that alleviates the body’s weight providing natural walking conditions, and after just a few weeks of training, the rats regain extensive control over their hindlimbs – at will – even without electrochemical stimulation or the harness. In 2012, Courtine and his team showed that rats with spinal injury could climb stairs and swim with neuroprosthetic rehabilitation.

rat
In Courtine’s lab, rats with a contusion ­that leads to complete paraplegia learn to walk again with the help of therapy that combines electrochemical stimulation of the spinal cord and robot-assisted rehabilitation. NeuroscienceNews.com image is adapted from the EPFL video.

Comparing the brains of injured rats after rehabilitation with those of healthy ones, the scientists were able to identify a region in the brainstem, the reticular formation, as being key in leading to recovery. The scientists uncovered this role using optogenetics and chemogenetics in transgenic animals, an ensemble of precise tools that allowed the activation and inactivation of well-defined circuits in the brain and brainstem to probe their function. They also exploited a new powerful light-sheet microscope developed by the Wyss Center for Bio and Neuroengineering in Geneva to visualize neural tracts. The entire central nervous system was rendered transparent, with the exception of the neural tracts that expressed a fluorescent protein. By passing a sheet of light throughout the non-sectioned brain and spinal cord, the scientists obtained previously unseen 3D images that showed the organisation of neural tracts in healthy animals and how the therapy reorganised these pathways without any bias. The injured neurons do not regrow spontaneously, but a reorganisation of the neural branching occurs above the injury leading to new connections.

It remains to be seen if neuroprosthetic rehabilitation in people lead to an analogous rewiring of the brain, brainstem and spinal cord. Courtine is optimistic, “We previously showed that plasticity, the remarkable ability of the nervous system to grow new connections after spinal cord injury, is even more robust in humans than in rodents. We are currently testing our therapy in people with spinal cord injury at the Lausanne university hospital (CHUV).”

About this neuroscience research article

Source: Hillary Sanctuary – EPFL
Publisher: Organized by NeuroscienceNews.com.
Image Source: NeuroscienceNews.com image is adapted from the EPFL video.
Video Source: Video credited to EPFL.
Original Research: Abstract in Nature Neuroscience.
doi:10.1038/s41593-018-0093-5

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]EPFL “Paraplegic Rat Walks Again After Therapy, and Now We Know Why.” NeuroscienceNews. NeuroscienceNews, 19 March 2018.
<https://neurosciencenews.com/paraplegic-rat-walks-8664/>.[/cbtab][cbtab title=”APA”]EPFL (2018, March 19). Paraplegic Rat Walks Again After Therapy, and Now We Know Why. NeuroscienceNews. Retrieved March 19, 2018 from https://neurosciencenews.com/paraplegic-rat-walks-8664/[/cbtab][cbtab title=”Chicago”]EPFL “Paraplegic Rat Walks Again After Therapy, and Now We Know Why.” https://neurosciencenews.com/paraplegic-rat-walks-8664/ (accessed March 19, 2018).[/cbtab][/cbtabs]


Abstract

Cortico–reticulo–spinal circuit reorganization enables functional recovery after severe spinal cord contusion

Severe spinal cord contusions interrupt nearly all brain projections to lumbar circuits producing leg movement. Failure of these projections to reorganize leads to permanent paralysis. Here we modeled these injuries in rodents. A severe contusion abolished all motor cortex projections below injury. However, the motor cortex immediately regained adaptive control over the paralyzed legs during electrochemical neuromodulation of lumbar circuits. Glutamatergic reticulospinal neurons with residual projections below the injury relayed the cortical command downstream. Gravity-assisted rehabilitation enabled by the neuromodulation therapy reinforced these reticulospinal projections, rerouting cortical information through this pathway. This circuit reorganization mediated a motor cortex–dependent recovery of natural walking and swimming without requiring neuromodulation. Cortico–reticulo–spinal circuit reorganization may also improve recovery in humans.

Feel free to share this EPFL.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.