Refresh

This website neurosciencenews.com/probiotic-pregnancy-neurodevelopment-27566/ is currently offline. Cloudflare's Always Online™ shows a snapshot of this web page from the Internet Archive's Wayback Machine. To check for the live version, click Refresh.

Probiotic During Pregnancy May Boost Fetal Brain Development

Summary: A study in mice shows that the probiotic Bifidobacterium breve, when taken by mothers during pregnancy, enhances fetal brain development by improving nutrient transport and growth processes.

The findings suggest that altering the maternal gut microbiome with probiotics could be a non-pharmaceutical strategy to support healthy fetal growth, particularly in cases of fetal growth restriction. Further research is needed to confirm these effects in humans and explore how probiotics interact with other gut bacteria during pregnancy.

Key Facts:

  • Bifidobacterium breve in the maternal gut increases nutrient transport to the fetal brain.
  • Probiotic supplementation may offer a non-pharmaceutical approach to support fetal growth.
  • Researchers plan to further investigate how these findings translate to human pregnancies.

Source: University of Cambridge

A study in mice has found that the bacteria Bifidobacterium breve in the mother’s gut during pregnancy supports healthy brain development in the fetus.

Researchers have compared the development of the fetal brain in mice whose mothers had no bacteria in their gut, to those whose mothers were given Bifidobacterium breve orally during pregnancy, but had no other bacteria in their gut.

Nutrient transport to the brain increased in fetuses of mothers given Bifidobacterium breve, and beneficial changes were also seen in other cell processes relating to growth.

This shows a pregnant woman.
They now plan further work to monitor the brain development of the offspring after birth, and to understand how Bifidobacterium breve interacts with the other gut bacteria present in natural situations. Credit: Neuroscience News

Bifidobacterium breve is a ‘good bacteria’ that occurs naturally in our gut, and is available as a supplement in probiotic drinks and tablets.

Obesity or chronic stress can alter the gut microbiome of pregnant women, often resulting in fetal growth abnormalities. The babies of up to 10% of first-time mothers have low birth weight or fetal growth restriction. If a baby hasn’t grown properly in the womb, there is an increased risk of conditions like cerebral palsy in infants and anxiety, depression, autism, and schizophrenia in later life.

These results suggest that improving fetal development – specifically fetal brain metabolism – by taking Bifidobacterium breve supplements while pregnant may support the development of a healthy baby.

The results are published today in the journal Molecular Metabolism.

“Our study suggests that by providing ‘good bacteria’ to the mother we could improve the growth and development of her baby while she’s pregnant,” said Dr Jorge Lopez-Tello, a researcher in the University of Cambridge’s Centre for Trophoblast Research, first author of the report.

He added: “This means future treatments for fetal growth restriction could potentially focus on altering the gut microbiome through probiotics, rather than offering pharmaceutical treatments – with the risk of side effects – to pregnant women.”

“The design of therapies for fetal growth restriction are focused on improving blood flow pathways in the mother, but our results suggest we’ve been thinking about this the wrong way – perhaps we should be more focused on improving maternal gut health,” said Professor Amanda Sferruzzi-Perri, a researcher in the University of Cambridge’s Centre for Trophoblast Research and senior author of the report, who is also a Fellow of St John’s College, Cambridge.

She added: “We know that good gut health – determined by the types of microbes in the gut – helps the body to absorb nutrients and protect against infections and diseases.”

The study was carried out in mice, which allowed the effects of Bifidobacterium breve to be assessed in a way that would not be possible in humans – the researchers could precisely control the genetics, other microorganisms and the environment of the mice. But they say the effects they measured are likely to be similar in humans.

They now plan further work to monitor the brain development of the offspring after birth, and to understand how Bifidobacterium breve interacts with the other gut bacteria present in natural situations.

Previous work by the same team found that treating pregnant mice with Bifidobacterium breve improves the structure and function of the placenta. This also enables a better supply of glucose and other nutrients to the developing fetus and improves fetal growth.

“Although further research is needed to understand how these effects translate to humans, this exciting discovery may pave the way for future clinical studies that explore the critical role of the maternal microbiome in supporting healthy brain development before birth,” said Professor Lindsay Hall at the University of Birmingham, who was also involved in the research.

While it is well known that the health of a pregnant mother is important for a healthy baby, the effect of her gut bacteria on the baby’s development has received little attention.

About this probiotics and neurodevelopment research news

Author: Sarah Collins
Source: University of Cambridge
Contact: Sarah Collins – University of Cambridge
Image: The image is credited to Neuroscience News

Original Research: Open access.
Maternal gut Bifidobacterium breve modifies fetal brain metabolism in germ-free mice” by Jorge Lopez-Tello et al. Molecular Metabolism


Abstract

Maternal gut Bifidobacterium breve modifies fetal brain metabolism in germ-free mice

Background

Recent advances have significantly expanded our understanding of the gut microbiome’s influence on host physiology and metabolism. However, the specific role of certain microorganisms in gestational health and fetal development remains underexplored.

Objective

This study investigates the impact of Bifidobacterium breve UCC2003 on fetal brain metabolism when colonized in the maternal gut during pregnancy.

Methods

Germ-free pregnant mice were colonized with or without B. breve UCC2003 during pregnancy. The metabolic profiles of fetal brains were analyzed, focusing on the presence of key metabolites and the expression of critical metabolic and cellular pathways.

Results

Maternal colonization with B. breve resulted in significant metabolic changes in the fetal brain. Specifically, ten metabolites, including citrate, 3-hydroxyisobutyrate, and carnitine, were reduced in the fetal brain. These alterations were accompanied by increased abundance of transporters involved in glucose and branched-chain amino acid uptake.

Furthermore, supplementation with this bacterium was associated with elevated expression of critical metabolic pathways such as PI3K-AKT, AMPK, STAT5, and Wnt-β-catenin signaling, including its receptor Frizzled-7. Additionally, there was stabilization of HIF-2 protein and modifications in genes and proteins related to cellular growth, axogenesis, and mitochondrial function.

Conclusions

The presence of maternal B. breve during pregnancy plays a crucial role in modulating fetal brain metabolism and growth. These findings suggest that Bifidobacterium could modify fetal brain development, potentially offering new avenues for enhancing gestational health and fetal development through microbiota-targeted interventions.

Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.