A password will be e-mailed to you.

A Molecular Trigger For Brain Inflammation

Summary: Findings could help guide researchers to develop new drugs to treat Multiple Sclerosis and other neurological diseases.

Source: UNC School of Medicine.

UNC School of Medicine research findings could lead to new drug targets for treating multiple sclerosis and other neurodegenerative diseases, including Alzheimer’s disease.

Brain inflammation is a key component of multiple sclerosis, Alzheimer’s, Parkinson’s, ALS, and most other major neurodegenerative diseases. How inflammation starts, how it’s sustained, and how it contributes to these diseases is not well understood, but scientists from the University of North Carolina School of Medicine have just found some important clues.

In a study published in the Journal of Experimental Medicine, UNC researchers led by Jenny Ting, PhD, the William R. Kenan Distinguished Professor of Genetics, identified key molecules that drive brain inflammation in a mouse model of multiple sclerosis – molecules that are present at abnormally high levels in the brains of humans with the disease.

The findings show that these inflammatory molecules are ripe targets for further study and potential targets for future multiple sclerosis treatments. The research may also lead to a better understanding of Alzheimer’s, traumatic brain injury, stroke and other diseases that involve neuroinflammation.

“We need to better understand brain inflammation at the molecular level in order to treat neurodegenerative conditions,” said Ting, who is also a member of the UNC Lineberger Comprehensive Cancer Center. “Our study shows how two proteins that control inflammation are crucial to a particular kind of brain inflammation.”

The study began as an investigation of LPC (lysophosphatidylcholine), a fat-related signaling molecule that researchers have suspected stokes harmful brain inflammation in multiple sclerosis and other central nervous system diseases.

In initial experiments, study co-lead authors – UNC postdoctoral researcher Haitao Guo, PhD, graduate student Leslie Freeman, and former graduate student Sushmita Jha, PhD (now an assistant professor at the Indian Institute of Technology Jodhpur) – found evidence that LPC triggers the inflammatory activation of mouse immune cells through two proteins called NLRP3 and NLRC4.

NLRP3 and NLRC4 are components of the so-called innate immune system – a network of infection-fighting molecules and cells evolutionarily older than the better-known adaptive immune system’s T-cells, B-cells, and antibodies. Like other NLR-family proteins, NLRP3 and NLRC4 appear to have evolved to detect molecular patterns associated with certain microbes. The two proteins trigger inflammation in response to these microbes.

There is evidence, too, that NLR-family proteins can trigger inflammation in response to non-microbial signals related to tissue damage. LPC is suspected to be one such kind of signal, and it is this sort of non-microbial tissue inflammation that researchers think is involved in neurodegenerative diseases.

In previous studies, NLRP3 was shown to be a factor in brain inflammation in multiple sclerosis and Alzheimer’s disease. But no one had reported a brain inflammation role for NLRC4 in neurodegenerative diseases involving animal models.

To investigate that possibility, Freeman, Guo, and Jha examined mouse astrocytes and microglia – resident brain cells that can perform immune functions in the nervous system. These cells are usually the main sources of inflammation in neurodegenerative diseases. Ting’s team found that LPC could induce an inflammatory response in these brain cells, as well, in a way dependent on NLRP3 and NLRC4.

The researchers then worked with a mouse model of multiple sclerosis. They used a chemical called cuprizone to induce brain inflammation. This chemical also helped them strip the fatty layer surrounding nerve fibers. They found that the usual inflammatory activation of astrocytes and microglia, along with the stripping of nerve fibers, was greatly reduced when the mice lacked the genes for both NLRP3 and NLRC4.

“Essentially, we saw a profound reduction of the inflammatory disease in these mice,” Guo said. “And where just one of those genes was absent, we didn’t see as pronounced a reduction of inflammation.”

Image shows glia.

The green represents glial fibrillary acidic proteins in a mouse astrocyte. NeuroscienceNews.com image is credited to Ting Lab.

Underscoring the likely clinical relevance of these findings, the group found high levels of NLRC4 in astrocytes and microglia from the brain-inflamed mice, as well as in biopsied brain tissue from multiple sclerosis patients. Affected mouse and human brain tissue also showed abnormally high levels of an LPC cell receptor protein called G2A.

“This is direct evidence of the importance of NLRC4 and NLRP3 in astrocytic and microglial inflammation, and we showed that this damage-associated molecule called LPC triggers the inflammation,” said Guo.

About this neuroscience research article

Other co-authors were Clément N. David and W. June Brickey of UNC.

Funding: The National Multiple Sclerosis Society and National Institutes of Health funded this work.

Source: Mark Derewicz – UNC School of Medicine
Image Source: NeuroscienceNews.com image is credited to Ting Lab.
Original Research: Abstract for “NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes” by Leslie Freeman, Haitao Guo, Clément N. David, W. June Brickey, Sushmita Jha, Jenny P.-Y. Ting in Journal of Experimental Medicine. Published online April 12 2017 doi:10.1084/jem.20150237

Cite This NeuroscienceNews.com Article
UNC School of Medicine “A Molecular Trigger For Brain Inflammation.” NeuroscienceNews. NeuroscienceNews, 27 April 2017.
<http://neurosciencenews.com/genetics-neuroinflammation-6527/>.
UNC School of Medicine (2017, April 27). A Molecular Trigger For Brain Inflammation. NeuroscienceNew. Retrieved April 27, 2017 from http://neurosciencenews.com/genetics-neuroinflammation-6527/
UNC School of Medicine “A Molecular Trigger For Brain Inflammation.” http://neurosciencenews.com/genetics-neuroinflammation-6527/ (accessed April 27, 2017).

Abstract

NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes

Inflammation in the brain accompanies several high-impact neurological diseases including multiple sclerosis (MS), stroke, and Alzheimer’s disease. Neuroinflammation is sterile, as damage-associated molecular patterns rather than microbial pathogens elicit the response. The inflammasome, which leads to caspase-1 activation, is implicated in neuroinflammation. In this study, we reveal that lysophosphatidylcholine (LPC), a molecule associated with neurodegeneration and demyelination, elicits NLRP3 and NLRC4 inflammasome activation in microglia and astrocytes, which are central players in neuroinflammation. LPC-activated inflammasome also requires ASC (apoptotic speck containing protein with a CARD), caspase-1, cathepsin-mediated degradation, calcium mobilization, and potassium efflux but not caspase-11. To study the physiological relevance, Nlrc4−/− and Nlrp3−/− mice are studied in the cuprizone model of neuroinflammation and demyelination. Mice lacking both genes show the most pronounced reduction in astrogliosis and microglial accumulation accompanied by decreased expression of the LPC receptor G2A, whereas MS patient samples show increased G2A. These results reveal that NLRC4 and NLRP3, which normally form distinct inflammasomes, activate an LPC-induced inflammasome and are important in astrogliosis and microgliosis.

“NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes” by Leslie Freeman, Haitao Guo, Clément N. David, W. June Brickey, Sushmita Jha, Jenny P.-Y. Ting in Journal of Experimental Medicine. Published online April 12 2017 doi:10.1084/jem.20150237

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive the latest neuroscience headlines and summaries sent to your email daily from NeuroscienceNews.com
We hate spam and only use your email to contact you about newsletters. We do not sell email addresses. You can cancel your subscription any time.
No more articles