A new drug target for chemically induced Parkinson’s disease

Summary: Mitochondrial CYP2D6 may be a powerful target for the treatment of Parkinson’s disease induced by MPTP.

Source: University of Pennsylvania

More than three decades ago, scientists discovered that a chemical found in a synthetic opioid, MPTP, induced the onset of a form of Parkinson’s disease. In a new study led by scientists from the School of Veterinary Medicine, researchers found that an enzyme in the body can metabolize compounds formed in the brain from alkaloids present in certain foods and tobacco into MPTP-like chemicals, triggering a neurodegenerative condition in mice.

The researchers, led by Narayan Avadhani and Mrittika Chattopadhyay, suggest that the enzyme, mitochondrial CYP2D6, presents a potentially powerful new target for Parkinson’s treatment.

“Over the past two or three decades, researchers have tried inhibiting the process by which they believed MPTP was metabolized, with mixed success,” says Avadhani. “We believe that mitochondrial CYP2D6 is the more direct drug target, which might prove better in treating idiopathic Parkinson’s disease.”

The study, which appears in the Journal of Biological Chemistry, investigates the mechanism of Parkinson’s disease when a specific cause cannot be pinpointed, which is a majority of examples of the chemically induced disease.

Previous studies have shown that MPTP and similar toxic compounds induce Parkinson’s disease in rodents and primates. The mechanism of action, as scientists understood it, involved the compounds being oxidized to form MPP+, a toxic metabolite. The enzyme that was believed to be responsible is called monoamine oxidase B (MAO-B), present in the nervous system’s glial cells. In that conception of the mechanism, MPP+ was thought to then be transferred to dopamine neurons by dopamine transporter proteins, and, indeed, Parkinson’s is characterized by unusually low dopamine levels in the brain.

Researchers have tried to stem the effects of Parkinson’s by targeting two players in this presumed pathway, both MAO-B and the dopamine transporter protein, with only mixed success.

This shows a brain

Researchers have tried to stem the effects of Parkinson’s by targeting two players in this presumed pathway, both MAO-B and the dopamine transporter protein, with only mixed success. The image in the public domain.

Yet the Penn-led study implicates an entirely separate mechanism. In earlier work, Avadhani and colleagues had shown that the enzyme CYP2D6, localized to the body’s energy factories, the mitochondria, could play a role in metabolizing MPTP to MPP+. In the new investigation, they took a closer look at beta-carbolines and isoquinolines, toxins that resemble MPTP which the body produces from substances found in tobacco smoke, alcohol, and some foods.

They found that, instead of MAO-B, it was mitochondrial CYP2D6 that activate the beta-carbolines and isoquinolines inside the dopamine-producing neurons, rather than the glial cells. This route of activation, in a mouse model, results in neuronal damage and oxidative stress, symptoms akin to Parkinson’s.

“CYP2D6 is known to play a role in influencing the activity of a number of drugs,” says Avadhani.

In an attempt to target this pathway, the researchers showed that mice lacking CYP2D6 did not exhibit the severe symptoms mice with the protein did. In addition, an inhibitor of CYP2D6 prevented neuronal damage in the nice.

“The CYP2D6 inhibitor ajmalicine is a member of the reserpine family of alkaloids, found in the plant Rauwolfia serpentine and was long used in India for treating mental illness, such as paranoia and schizophrenia,” Avadhani says. “Mitochondrial targeting of such compounds is likely to be effective in treating Parkinson’s patients, and pursuing that is our future strategy.”

Funding: The study was supported by the National Institutes of Health (grants GM34883 and GM118122) and the Harriet Ellison Woodward Trust.

Narayan Avadhani is the Harriet Ellison Woodward Professor of Biochemistry in the School of Veterinary Medicine’s Department of Biomedical Sciences at the University of Pennsylvania.

Mrittika Chattopadhyay is a postdoctoral researcher in the Avadhani lab at the University of Pennsylvania School of Veterinary Medicine.

About this neuroscience research article

Source:
University of Pennsylvania
Media Contacts:
Katherine Unger Baillie – University of Pennsylvania
Image Source:
The image is in the public domain.

Original Research: Open access
“Mitochondria-targeted cytochrome P450 CYP2D6 is involved in monomethylamine-induced neuronal damage in mouse models”. Mrittika Chattopadhyay, Anindya Roy Chowdhury, Ting Feng, Charles-Antoine Assenmacher, Enrico Radaelli, F. Peter Guengerich and Narayan Avadhani.
Journal of Biological Chemistry. doi:10.1074/jbc.RA119.008848

Abstract

Mitochondria-targeted cytochrome P450 CYP2D6 is involved in monomethylamine-induced neuronal damage in mouse models

Parkinson’s disease (PD) is a major human disease associated with degeneration of the central nervous system. Evidence suggests that several endogenously formed 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mimicking chemicals that are metabolic conversion products, especially β-carbolines and isoquinolines act as neurotoxins that induce PD or enhance the progression of the disease. We previously have demonstrated that mitochondria-targeted human cytochrome P450 2D6 (CYP2D6), supported by mitochondrial adrenodoxin and adrenodoxin reductase, can efficiently catalyze the conversion of MPTP to toxic 1-methyl-4-phenylpyridinium ion (MPP+). In the present study, we show that the mitochondrially targeted CYP2D6 can efficiently catalyze MPTP-mimic compounds i.e. 2-methyl 1,2,3,4 tetrahydroisoquinoline, 2-methyl 1,2,3,4 tetrahydro-β-carboline and 9-methyl-norharmon suspected to induce PD in humans. Our results reveal that activity and respiration in mouse brain mitochondrial complex I are significantly affected by these toxins in wild type (WT) mice but remain unchanged in Cyp2d6 locus knock out mice indicating the possible role of CYP2D6 in the metabolism of these compounds both in vivo and in vitro. These metabolic effects were minimized in the presence of two CYP2D6 inhibitors, quinidine and ajmalicine. Neuro-2a cells stably expressing predominantly mitochondrial targeted CYP2D6 were more sensitive to toxin-mediated respiratory dysfunction and complex I inhibition than cells expressing predominantly endoplasmic reticulum-targeted CYP2D6. Exposure to these toxins also induced the autophagic marker, Parkin and the mitochondrial fission marker, dynamin-related protein 1 (Drp1) in differentiated neurons expressing mitochondrial CYP2D6. Our results show that monomethylamines are converted to their toxic cationic form by mitochondrially directed CYP2D6 and in result in neuronal degradation in mice.

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive the latest neuroscience headlines and summaries sent to your email daily from NeuroscienceNews.com
We hate spam and only use your email to contact you about newsletters. We do not sell email addresses. You can cancel your subscription any time.
No more articles