Neuroscience News logo for mobile.
      Neuroscience News Logo

      Newly Discovered Anatomy Shields and Monitors Brain

      FeaturedNeuroscience
      ·January 6, 2023

      Summary: Researchers have discovered a previously unidentified component of brain anatomy that acts as both a protective barrier and a platform by which immune cells monitor the brain for signs of inflammation and infection.

      Source: University of Rochester

      From the complexity of neural networks to basic biological functions and structures, the human brain only reluctantly reveals its secrets. Advances in neuro-imaging and molecular biology have only recently enabled scientists to study the living brain at level of detail not previously achievable, unlocking many of its mysteries.

      The latest discovery, described today in the journal Science, is a previously unknown component of brain anatomy that acts as both a protective barrier and platform from which immune cells monitor the brain for infection and inflammation.

      The new study comes from the labs of Maiken Nedergaard, co-director of the Center for Translational Neuromedicine at University of Rochester and the University of Copenhagen and Kjeld Møllgård, M.D., a professor of neuroanatomy at the University of Copenhagen. Nedergaard and her colleagues have transformed our understanding of the fundamental mechanics of the human brain and made significant findings to the field of neuroscience, including detailing the many critical functions of previously overlooked cells in the brain called glia and the brain’s unique process of waste removal, which the lab named the glymphatic system.

      “The discovery of a new anatomic structure that segregates and helps control the flow of cerebrospinal fluid (CSF) in and around the brain now provides us much greater appreciation of the sophisticated role that CSF plays not only in transporting and removing waste from the brain, but also in supporting its immune defenses,” said Nedergaard.

      The study focuses on the membranes that encase the brain, which create a barrier from the rest of the body, and keep it bathed in CSF. The traditional understanding of what is collectively called the meningeal layer, a barrier comprised of individual layers known as the dura, arachnoid, and pia matter.

      The new layer discovered by the U.S. and Denmark-based research team further divides the space below the arachnoid layer, the subarachnoid space, into two compartments, separated by the newly described layer, which the researchers name the SLYM, an abbreviation of Subarachnoidal LYmphatic-like Membrane. While much of the research in the paper describes the function of SLYM in mice, they also report its actual presence in the adult human brain as well.

      The SLYM is a type of membrane called mesothelium, which is known to line other organs in the body, including the lungs and heart. Mesothelia typically surround and protect organs, and harbor immune cells.

      The idea that a similar membrane might exist in the central nervous system was a question first posed by Møllgård, the first author of the study. His research focuses on developmental neurobiology, and on the systems of barriers that protect the brain.

      The new membrane is very thin and delicate, and consists of only one or a few cells in thickness. Yet the SLYM is a tight barrier, and allows only very small molecules to transit; it seems to separate “clean” and “dirty” CSF.

      This shows a diagram of the anatomical structure
      New study in Nature Aging describes a new anatomical structure in the brain called SLYM, an abbreviation of Subarachnoidal LYmphatic-like Membrane, that acts as a barrier and a platform from which immune cells can monitor the brain. Credit: University of Copenhagen

      This last observation hints at the likely role played by SLYM in the glymphatic system, which requires a controlled flow and exchange of CSF, allowing the influx of fresh CSF while flushing the toxic proteins associated with Alzheimer’s and other neurological diseases from the central nervous system.

      This discovery will help researchers more precisely understand the mechanics of the glymphatic system, which was the subject of a recent $13 million grant from the National Institutes of Health’s BRAIN Initiative to the Center for Translational Neuromedicine at the University of Rochester.

      The SLYM also appears important to the brain’s defenses. The central nervous system maintains its own native population of immune cells, and the membrane’s integrity prevents outside immune cells from entering. In addition, the SLYM appears to host its own population of central nervous system immune cells that use the SLYM for surveillance at the surface of brain, allowing them to scan passing CSF for signs of infection.

      Discovery of the SLYM opens the door for further study of its role in brain disease. For example, the researchers note that larger and more diverse concentrations of immune cells congregate on the membrane during inflammation and aging. When the membrane was ruptured during traumatic brain injury, the resulting disruption in the flow of CSF impaired the glymphatic system and allowed non-central nervous system immune cells to enter the brain.

      These and similar observations suggest that diseases as diverse as multiple sclerosis, central nervous system infections, and Alzheimer’s might be triggered or worsened by abnormalities in SLYM function. They also suggest that the delivery of drugs and gene therapeutics to the brain may be impacted by SLYM function, which will need to be considered as new generations of biologic therapies are being developed.

      Additional co-authors include Felix Beinlich, Peter Kusk, Leo Miyakoshi, Christine Delle, Virginia Pla, Natalie Hauglund, Tina Esmail, Martin Rasmussen, Ryszard Gomolka, and Yuki Mori with Center for Translational Neuromedicine at the University of Copenhagen.

      About this neuroanatomy research news

      Author: Press Office
      Source: University of Rochester
      Contact: Press Office – University of Rochester
      Image: The image is credited to University of Copenhagen

      Original Research: Closed access.
      “A mesothelium divides the subarachnoid space into functional compartments” by Kjeld Møllgård et al. Science


      Abstract

      A mesothelium divides the subarachnoid space into functional compartments

      The central nervous system is lined by meninges, classically known as dura, arachnoid, and pia mater.

      We show the existence of a fourth meningeal layer that compartmentalizes the subarachnoid space in the mouse and human brain, designated the subarachnoid lymphatic-like membrane (SLYM). SLYM is morpho- and immunophenotypically similar to the mesothelial membrane lining of peripheral organs and body cavities, and it encases blood vessels and harbors immune cells.

      Functionally, the close apposition of SLYM with the endothelial lining of the meningeal venous sinus permits direct exchange of small solutes between cerebrospinal fluid and venous blood, thus representing the mouse equivalent of the arachnoid granulations.

      The functional characterization of SLYM provides fundamental insights into brain immune barriers and fluid transport.

      Join our Newsletter
      Thank you for subscribing.
      Something went wrong.
      I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
      Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
      We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.
      Tags
      brain anatomybrain researchimmune systeminflammationmicroglianeuroanatomyneurobiologyNeuroscienceSLYMSubarachnoidal LYmphatic-like MembraneUniversity of Rochester
      ShareTweetShareShareSubmitEmail
      Neuroscience News
      Neuroscience News posts science research news from labs, universities, hospitals and news departments around the world. Science articles cover neuroscience, psychology, AI, robotics, neurology, brain cancer, mental health, machine learning, autism, Parkinson's, Alzheimer's, brain research, depression and other sciences.
      Related
      This shows a stressed woman and leaves.

      Stress Levels Predict Cannabis Use

      This shows a neuron with a broken myelin sheath.

      Losing Myelin Scrambles the Brain’s Sensory Signals

      This shows the outline of a woman.

      Anti-Inflammatory Treatments Show Promise for Depression

      2 Comments

      1. Kiumars Lalezarzadeh says:
        January 6, 2023 at 8:14 pm

        Could there be a zeitgeber influencing the cycle of the CSF flow in this subarachnoid lymphatic space (i.e., close to the penetrating light source on the surface)? If yes, do different underlying disease substances and/or proteins (e.g, Beta Amyloid, Tau, synucleinopathathies) block or permit the penetration of light (extrinsic zeitgeber) that may be interacting with the natural intrinsic lymphatic pump, flagella, and CSF flow every 18 hours, for example?

      2. Sudip Mukherjee says:
        January 6, 2023 at 6:40 am

        Mild Cortical Atrophy can be cure ?

      Comments are closed.

      Neuroscience News Footer Logo
      • Facebook
      • X
      • Instagram
      • YouTube
      • Linkedin

      Neuroscience News Sitemap
      Neuroscience Graduate and Undergraduate Programs
      Free Neuroscience MOOCs
      About
      Contact Us
      Privacy Policy
      Submit Neuroscience News
      Subscribe for Emails

      Neuroscience Research
      Psychology News
      Brain Cancer Research
      Alzheimer’s Disease
      Parkinson’s News
      Autism / ASD News
      Neurotechnology News
      Artificial Intelligence News
      Robotics News

      Search Neuroscience News

      Neuroscience News is an online science magazine offering free to read research articles about neuroscience, neurology, psychology, artificial intelligence, neurotechnology, robotics, deep learning, neurosurgery, mental health and more.

      Neuroscience News
      • Neuroscience
        • Featured
        • Neuroscience Videos
        • Neuro Web Stories
        • Open Access Neuroscience
        • Electrophysiology
        • Genetics
        • Neuroscience Programs
      • Neurology
        • Alzheimer’s Disease
        • Brain Research
        • Brain Cancer
        • Autism
        • Epilepsy
        • Traumatic Brain Injuries
        • Parkinson’s Disease
      • Psychology
        • Schizophrenia
        • Depression
        • Bipolar Disorder
        • Mental Health
      • AI
        • Neural Networks
        • Deep Learning
        • Machine Learning
      • Robotics
      • Neurotech
        • Brain Computer Interfaces
        • Neuroprosthetics
      • About
        • Neuroscience Newsletters
        • Submit Neuroscience News
        • Privacy Policy
        • Neuroscience News Sitemap
        • Contact Neuroscience News
        • Advertise on Neuroscience News
      Neuroscience News Small Logo
      • Neuroscience
        • Featured
        • Neuroscience Videos
        • Neuro Web Stories
        • Open Access Neuroscience
        • Electrophysiology
        • Genetics
        • Neuroscience Programs
      • Neurology
        • Alzheimer’s Disease
        • Brain Research
        • Brain Cancer
        • Autism
        • Epilepsy
        • Traumatic Brain Injuries
        • Parkinson’s Disease
      • Psychology
        • Schizophrenia
        • Depression
        • Bipolar Disorder
        • Mental Health
      • AI
        • Neural Networks
        • Deep Learning
        • Machine Learning
      • Robotics
      • Neurotech
        • Brain Computer Interfaces
        • Neuroprosthetics
      • About
        • Neuroscience Newsletters
        • Submit Neuroscience News
        • Privacy Policy
        • Neuroscience News Sitemap
        • Contact Neuroscience News
        • Advertise on Neuroscience News

      Categories

      • Artificial Intelligence
      • Auditory Neuroscience
      • Autism
      • Brain Cancer
      • Deep Learning
      • Electrophysiology
      • Events
      • Featured
      • Featured Articles
      • Genetics
      • Machine Learning
      • Most Popular
      • Neuroethics
      • Neurology
      • Neuroscience
      • Neuroscience Abstracts
      • Neuroscience Book Reviews
      • Neuroscience Business
      • Neuroscience Intros
      • Neuroscience News
      • Neuroscience News.com
      • Neuroscience Opinions
      • Neuroscience Videos
      • Neurotech
      • Open Neuroscience Articles
      • Pain
      • Psychology
      • Robotics
      • Sponsored Neuroscience News
      • Visual Neuroscience
      Neuroscience News LogoNeuroscience News
      This shows a stressed woman and leaves.

      Stress Levels Predict Cannabis Use

      This shows a neuron with a broken myelin sheath.

      Losing Myelin Scrambles the Brain’s Sensory Signals

      This shows a brain.

      AI Turns Simple EEG Scans Into Accurate Dementia Detectors

      This shows a person's head.

      Positive Imagining Changes the Brain in Seconds

      Start typing to see results or hit ESC to close
      Neuroscience neurobiology brain research Psychology Neurology
      See all results

      Subscribe

      Neuroscience News Daily Emails
      Go to Appearance > Customize > Subscribe Pop-up to set this up.