Neuroscientists Find First Evidence Animals Can Mentally Replay Past Events

Summary: Indiana University researchers provide evidence that rats are able to mentally replay memories of past events. The study reveals the animals’ memories were long lasting and resistant to interference from other memories, both of which are hallmarks of episodic memory, researchers say.

Source: Indiana University.

Neuroscientists at Indiana University have reported the first evidence that non-human animals can mentally replay past events from memory. The discovery could help advance the development of new drugs to treat Alzheimer’s disease.

The study, led by IU professor Jonathon Crystal, appears today in the journal Current Biology.

“The reason we’re interested in animal memory isn’t only to understand animals, but rather to develop new models of memory that match up with the types of memory impaired in human diseases such as Alzheimer’s disease,” said Crystal, a professor in the IU Bloomington College of Arts and Sciences’ Department of Psychological and Brain Sciences and director of the IU Bloomington Program in Neuroscience.

Under the current paradigm, Crystal said most preclinical studies on potential new Alzheimer’s drugs examine how these compounds affect spatial memory, one of the easiest types of memory to assess in animals. But spatial memory is not the type of memory whose loss causes the most debilitating effects of Alzheimer’s disease.

“If your grandmother is suffering from Alzheimer’s, one of the most heartbreaking aspects of the disease is that she can’t remember what you told her about what’s happening in your life the last time you saw her,” said Danielle Panoz-Brown, an IU Ph.D. student who is the first author on the study. “We’re interested in episodic memory — and episodic memory replay — because it declines in Alzheimer’s disease, and in aging in general.”

Episodic memory is the ability to remember specific events. For example, if a person loses their car keys, they might try to recall every single step — or “episode” — in their trip from the car to their current location. The ability to replay these events in order is known as “episodic memory replay.” People wouldn’t be able to make sense of most scenarios if they couldn’t remember the order in which they occurred, Crystal said.

To assess animals’ ability to replay past events from memory, Crystal’s lab spent nearly a year working with 13 rats, which they trained to memorize a list of up to 12 different odors. The rats were placed inside an “arena” with different odors and rewarded when they identified the second-to-last odor or fourth-to-last odor in the list.

To test the rats’ memory, IU researchers placed the animals inside an “arena” with different odors. The rats were rewarded when they identified the second-to-last item or fourth-to-last odor from a list of unpredictable length. image is credited to Indiana University.

The team changed the number of odors in the list prior to each test to confirm the odors were identified based upon their position in the list, not by scent alone, proving the animals were relying on their ability to recall the whole list in order. Arenas with different patterns were used to communicate to the rats which of the two options was sought.

After their training, Crystal said, the animals successfully completed their task about 87 percent of the time across all trials. The results are strong evidence the animals were employing episodic memory replay.

Additional experiments confirmed the rats’ memories were long-lasting and resistant to “interference” from other memories, both hallmarks of episodic memory. They also ran tests that temporarily suppressed activity in the hippocampus — the site of episodic memory — to confirm the rats were using this part of their brain to perform their tasks.

Crystal said the need to find reliable ways to test episodic memory replay in rats is urgent since new genetic tools are enabling scientists to create rats with neurological conditions similar to Alzheimer’s disease. Until recently, only mice were available with the genetic modifications needed to study the effect of new drugs on these symptoms.

“We’re really trying push the boundaries of animal models of memory to something that’s increasingly similar to how these memories work in people,” he said. “If we want to eliminate Alzheimer’s disease, we really need to make sure we’re trying to protect the right type of memory.”

About this neuroscience research article

Additional authors on the paper are IU professor Andrea Hohmann; Ph.D. students Vishakh Iyer and Lawrence M. Carey; and undergraduate students Christina M. Sluka, Gabriel Rajic, Jesse Kestenman, Meredith Gentry, Sydney Brotheridge, Isaac Somekh, Hannah E. Corbin, Kjersten G. Tucker, Bianca Almeida, Severine B. Hex and Krysten D. Garcia. Hohmann is also a Linda and Jack Gill Chair of Neuroscience at IU. Garcia and Hex participated in the study through the IU Center for the Integrated Study on Animal Behavior.

Funding: The study was funded in part by the National Institutes of Health and the National Science Foundation.

Source: Kevin D. Fryling – Indiana University
Publisher: Organized by
Image Source: image is credited to Indiana University.
Video Source: Video credited to Indiana University.
Original Research: Open access research for “Replay of Episodic Memories in the Rat” by Danielle Panoz-Brown, Vishakh Iyer, Lawrence M. Carey, Christina M. Sluka, Gabriela Rajic, Jesse Kestenman, Meredith Gentry, Sydney Brotheridge, Isaac Somekh, Hannah E. Corbin, Kjersten G. Tucker, Bianca Almeida, Severine B. Hex, Krysten D. Garcia, Andrea G. Hohmann, and Jonathon D. Crystal in Current Biology. Published May 10 2018.

Cite This Article

[cbtabs][cbtab title=”MLA”]Indiana University”Neuroscientists Find First Evidence Animals Can Mentally Replay Past Events.” NeuroscienceNews. NeuroscienceNews, 10 May 2018.
<>.[/cbtab][cbtab title=”APA”]Indiana University(2018, May 10). Neuroscientists Find First Evidence Animals Can Mentally Replay Past Events. NeuroscienceNews. Retrieved May 10, 2018 from[/cbtab][cbtab title=”Chicago”]Indiana University”Neuroscientists Find First Evidence Animals Can Mentally Replay Past Events.” (accessed May 10, 2018).[/cbtab][/cbtabs]


Replay of Episodic Memories in the Rat

•Rats replay a stream of multiple episodic memories
•Replay of episodic memories is hippocampal dependent
•The ability to replay episodic memory is quite old in the evolutionary timescale

Vivid episodic memories in people have been characterized as the replay of multiple unique events in sequential order. The hippocampus plays a critical role in episodic memories in both people and rodents. Although rats remember multiple unique episodes, it is currently unknown if animals “replay” episodic memories. Therefore, we developed an animal model of episodic memory replay. Here, we show that rats can remember a trial-unique stream of multiple episodes and the order in which these events occurred by engaging hippocampal-dependent episodic memory replay. We document that rats rely on episodic memory replay to remember the order of events rather than relying on non-episodic memories. Replay of episodic memories survives a long retention-interval challenge and interference from the memory of other events, which documents that replay is part of long-term episodic memory. The chemogenetic activating drug clozapine N-oxide (CNO), but not vehicle, reversibly impairs episodic memory replay in rats previously injected bilaterally in the hippocampus with a recombinant viral vector containing an inhibitory designer receptor exclusively activated by a designer drug (DREADD; AAV8-hSyn-hM4Di-mCherry). By contrast, two non-episodic memory assessments are unaffected by CNO, showing selectivity of this hippocampal-dependent impairment. Our approach provides an animal model of episodic memory replay, a process by which the rat searches its representations in episodic memory in sequential order to find information. Our findings using rats suggest that the ability to replay a stream of episodic memories is quite old in the evolutionary timescale.

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.