Experimental Drug Stops Parkinson’s Progression: Mouse Study

Summary: A newly developed experimental drug, that contains similar compounds to those in diabetes medications, slows the progression of Parkinson’s in mouse models of the disease, researchers report.

Source: Johns Hopkins Medicine.

Johns Hopkins researchers say they have developed an experimental drug, similar to compounds used to treat diabetes, that slows the progression of Parkinson’s disease itself — as well as its symptoms — in mice. In experiments performed with cultures of human brain cells and live mouse models, they report the drug blocked the degradation of brain cells that is the hallmark of Parkinson’s disease. The drug is expected to move to clinical trials this year.

“It is amazingly protective of target nerve cells,” says Ted Dawson, M.D., Ph.D., director of the Institute for Cell Engineering and professor of neurology at the Johns Hopkins University School of Medicine.

Dawson explains that if planned clinical trials for the drug, named NLY01, are successful in humans, it could be one of the first treatments to directly target the progression of Parkinson’s disease, not just the muscle rigidity, spasmodic movements, fatigue, dizziness, dementia and other symptoms of the disorder.

A report of the study’s results was published June 11 in Nature Medicine.

According to the investigators, NLY01 works by binding to so-called glucagon-like peptide-1 receptors on the surface of certain cells. Similar drugs are used widely in the treatment of type 2 diabetes to increase insulin levels in the blood. Though past studies in animals suggested the neuroprotective potential of this class of drugs, researchers had not shown directly how it operated in the brain.

To find out, Dawson and his team tested NLY01 on three major cell types in the human brain: astrocytes, microglia and neurons. They found that microglia, a brain cell type that sends signals throughout the central nervous system in response to infection or injury, had the most sites for NLY01 to bind to–two times higher than the other cell types, and 10 times higher in humans with Parkinson’s disease compared to humans without the disease.

Dawson and his team knew that microglia secreted chemical signals that converted astrocytes–the star shaped cells that help neurons communicate with their neighbors–into aggressive “activated” astrocytes, which eat away at the connections between cells in the brain, causing neurons to die off. They speculated that NLY01 might stop this conversion.

“The activated astrocytes we focused on go into a revolt against the brain,” says Dawson, “and this structural breakdown contributes to the dead zones of brain tissue found in those with Parkinson’s disease. The ideas was that if we could find a way to calm those astrocytes, we might be able to slow the progression of Parkinson’s disease.”

In a preliminary experiment in laboratory-grown human brain cells, Dawson’s team treated human microglia with NLY01 and found that they were able to turn the activating signals off. When healthy astrocytes were combined with the treated microglia, they did not convert into destructive activated astrocytes and remained healthy neuroprotective cells. Dawson’s team suspected that neurons throughout the body could be protected in the same way.

They explored this hypothesis by testing the drug’s effectiveness in mice engineered to have a rodent version of Parkinson’s disease.

In one experiment, Dawson’s team injected the mice with alpha-synuclein, the protein known to be the primary driver of Parkinson’s disease, and treatedmice with NLY01. Similar but untreated mice injected with alpha-synuclein showed pronounced motor impairment over the course of six months in behavioral tests such as the pole test, which allows researchers to measure motor impairment such as that caused by Parkinson’s disease. However, Dawson’s team found that the mice treated with NLY01 maintained normal physical function and had no loss of dopamine neurons, indicating that the drug protected against the development of Parkinson’s disease.

In a second experiment, Dawson’s team used mice that were genetically engineered to naturally produce more human-type alpha-synuclein typically used to model human Parkinson’s disease that runs in families. Under normal conditions, these so-called transgenic mice will succumb to the disease in 387 days. However, Dawson’s team found that treatment with NLY01 extended the lives of the 20 mice treated with the drug by over 120 days.

Upon further investigation, Dawson’s team found that the brains of the mice treated with NLY01 showed few signs of the neurodegenerative characteristics of Parkinson’s disease.

brain
When healthy astrocytes were combined with the treated microglia, they did not convert into destructive activated astrocytes and remained healthy neuroprotective cells. NeuroscienceNews.com image is in the public domain.

Parkinson’s disease is a progressive disorder of the nervous system that affects approximately 1 million people in the U.S., according to the Parkinson’s Foundation. Early symptoms include tremors, trouble sleeping, constipation and trouble moving or walking, which ultimately give way to more severe symptoms such as loss of motor function and the ability to speak, and dementia. Most people begin showing symptoms in their 60s, but cases have been reported in patients as young as 2 years old.

Dawson cautions that the experimental drug must still be tested for safety as well as effectiveness in people, but based on the safety profile of other similar drugs, he does not anticipate any major roadblocks to its use in humans.

Dawson says he and his team have reason to be hopeful that NLY01 could, in a relatively short period of time, make an impact on the lives of those with Parkinson’s.

Similar drugs to NLY01 already approved by the Food and Drug Administration for the treatment of type 2 diabetes include exenatide, lixisenatide, liraglutide and dulaglutide, each of which can cost approximately $2,000 for a 90-day supply. NLY01 is a long-acting drug with improved the brain penetration compared to these approved drugs for diabetes.

About this neuroscience research article

Other researchers involved in the study include Tae-In Kam, Nikhil Panicker, SangMin Kim, Seung-Hwan Kwon, Hyejin Park, Sangjune Kim, Nayeon Oh, Nayoung Alice Kim, Saebom Lee, Manoj Kumar, Daniel An, Sung-Ung Kang, Yumin Oh, Jong-Sung Park, Young Joo Park, Donghoon Kim, Zoltan Mari and Seulki Lee of the Johns Hopkins University School of Medicine; Seung Pil Yun, Senthilkumar Karuppagounder, Saurav Brahmachari, Xiaobo Mao and Valina Dawson of the Johns Hopkins University School of Medicine and the Adrienne Helis Malvin Medical Research Foundation; Jun Hee Lee of the University of Alabama at Birmingham School of Medicine; Yunjong Lee and Kang Choon Lee of Sungkyunkwan University, Suwon, Republic of Korea; Dong Hee Na of Chung-Ang University, Seoul, Republic of Korea; Sang Hun Lee of Soonchunhyang University, Seoul, Republic of Korea; Viktor Roschke of Neuraly Inc.; Shane Liddelow and Ben Barres of Stanford University; and Han Seok Ko of the Johns Hopkins University School of Medicine, the Adrienne Helis Malvin Medical Research Foundation and the Diana Helis Henry Medical Research Foundation.

Funding: This work was supported by the National Institute of Neurological Disorders and Stroke (NS38377, NS082205 and NS098006), the Maryland Stem Cell Research Foundation (2012 MSCRFE-0059), the JPB Foundation, the National Institute on Aging (1K01AG056841-01), the American Parkinson Disease Association Research Grant Awards and the National Research Foundation of Korea (NRF-2016R1D1A1B03934847).

Source: Vanessa Wasta – Johns Hopkins Medicine
Publisher: Organized by NeuroscienceNews.com.
Image Source: NeuroscienceNews.com image is in the public domain.
Original Research: Abstract for “Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease” by Seung Pil Yun, Tae-In Kam, Nikhil Panicker, SangMin Kim, Yumin Oh, Jong-Sung Park, Seung-Hwan Kwon, Yong Joo Park, Senthilkumar S. Karuppagounder, Hyejin Park, Sangjune Kim, Nayeon Oh, Nayoung Alice Kim, Saebom Lee, Saurav Brahmachari, Xiaobo Mao, Jun Hee Lee, Manoj Kumar, Daniel An, Sung-Ung Kang, Yunjong Lee, Kang Choon Lee, Dong Hee Na, Donghoon Kim, Sang Hun Lee, Viktor V. Roschke, Shane A. Liddelow, Zoltan Mari, Ben A. Barres, Valina L. Dawson, Seulki Lee, Ted M. Dawson & Han Seok Ko in Nature Medicine. Published June 11 2028.
doi:10.1038/s41591-018-0051-5

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]Johns Hopkins Medicine”Experimental Drug Stops Parkinson’s Progression: Mouse Study.” NeuroscienceNews. NeuroscienceNews, 2 July 2028.
<https://neurosciencenews.com/pharmacology-parkinsons-progression-9502/>.[/cbtab][cbtab title=”APA”]Johns Hopkins Medicine(2028, July 2). Experimental Drug Stops Parkinson’s Progression: Mouse Study. NeuroscienceNews. Retrieved July 2, 2028 from https://neurosciencenews.com/pharmacology-parkinsons-progression-9502/[/cbtab][cbtab title=”Chicago”]Johns Hopkins Medicine”Experimental Drug Stops Parkinson’s Progression: Mouse Study.” https://neurosciencenews.com/pharmacology-parkinsons-progression-9502/ (accessed July 2, 2028).[/cbtab][/cbtabs]


Abstract

Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease

Activation of microglia by classical inflammatory mediators can convert astrocytes into a neurotoxic A1 phenotype in a variety of neurological diseases. Development of agents that could inhibit the formation of A1 reactive astrocytes could be used to treat these diseases for which there are no disease-modifying therapies. Glucagon-like peptide-1 receptor (GLP1R) agonists have been indicated as potential neuroprotective agents for neurologic disorders such as Alzheimer’s disease and Parkinson’s disease. The mechanisms by which GLP1R agonists are neuroprotective are not known. Here we show that a potent, brain-penetrant long-acting GLP1R agonist, NLY01, protects against the loss of dopaminergic neurons and behavioral deficits in the α-synuclein preformed fibril (α-syn PFF) mouse model of sporadic Parkinson’s disease14,15. NLY01 also prolongs the life and reduces the behavioral deficits and neuropathological abnormalities in the human A53T α-synuclein (hA53T) transgenic mouse model of α-synucleinopathy-induced neurodegeneration16. We found that NLY01 is a potent GLP1R agonist with favorable properties that is neuroprotective through the direct prevention of microglial-mediated conversion of astrocytes to an A1 neurotoxic phenotype. In light of its favorable properties, NLY01 should be evaluated in the treatment of Parkinson’s disease and related neurologic disorders characterized by microglial activation.

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive the latest neuroscience headlines and summaries sent to your email daily from NeuroscienceNews.com
We hate spam and only use your email to contact you about newsletters. We do not sell email addresses. You can cancel your subscription any time.