Nutrition Has Benefits For Brain Organization

Summary: A new study reveals higher levels of monounsaturated fatty acids are linked to greater general intelligence.

Source: University of Illinois.

Nutrition has been linked to cognitive performance, but researchers have not pinpointed what underlies the connection. A new study by University of Illinois researchers found that monounsaturated fatty acids – a class of nutrients found in olive oils, nuts and avocados – are linked to general intelligence, and that this relationship is driven by the correlation between MUFAs and the organization of the brain’s attention network.

The study of 99 healthy older adults, recruited through Carle Foundation Hospital in Urbana, compared patterns of fatty acid nutrients found in blood samples, functional MRI data that measured the efficiency of brain networks, and results of a general intelligence test. The study was published in the journal NeuroImage.

“Our goal is to understand how nutrition might be used to support cognitive performance and to study the ways in which nutrition may influence the functional organization of the human brain,” said study leader Aron Barbey, a professor of psychology. “This is important because if we want to develop nutritional interventions that are effective at enhancing cognitive performance, we need to understand the ways that these nutrients influence brain function.”

“In this study, we examined the relationship between groups of fatty acids and brain networks that underlie general intelligence. In doing so, we sought to understand if brain network organization mediated the relationship between fatty acids and general intelligence,” said Marta Zamroziewicz, a recent Ph.D. graduate of the neuroscience program at Illinois and lead author of the study.

Studies suggesting cognitive benefits of the Mediterranean diet, which is rich in MUFAs, inspired the researchers to focus on this group of fatty acids. They examined nutrients in participants’ blood and found that the fatty acids clustered into two patterns: saturated fatty acids and MUFAs.

“Historically, the approach has been to focus on individual nutrients. But we know that dietary intake doesn’t depend on any one specific nutrient; rather, it reflects broader dietary patterns,” said Barbey, who also is affiliated with the Beckman Institute for Advanced Science and Technology at Illinois.

The researchers found that general intelligence was associated with the brain’s dorsal attention network, which plays a central role in attention-demanding tasks and everyday problem solving. In particular, the researchers found that general intelligence was associated with how efficiently the dorsal attention network is functionally organized using a measure called small-world propensity, which describes how well the neural network is connected within locally clustered regions as well as across globally integrated systems.

Image shows a flow chart.
Illinois professor Aron Barbey led a study that found the functional network organization in the brain mediates the relationship between nutrition and intelligence. image is credited to Julie McMahon.

In turn, they found that those with higher levels of MUFAs in their blood had greater small-world propensity in their dorsal attention network. Taken together with an observed correlation between higher levels of MUFAs and greater general intelligence, these findings suggest a pathway by which MUFAs affect cognition.

“Our findings provide novel evidence that MUFAs are related to a very specific brain network, the dorsal attentional network, and how optimal this network is functionally organized,” Barbey said. “Our results suggest that if we want to understand the relationship between MUFAs and general intelligence, we need to take the dorsal attention network into account. It’s part of the underlying mechanism that contributes to their relationship.”

Barbey hopes these findings will guide further research into how nutrition affects cognition and intelligence. In particular, the next step is to run an interventional study over time to see whether long-term MUFA intake influences brain network organization and intelligence.

“Our ability to relate those beneficial cognitive effects to specific properties of brain networks is exciting,” Barbey said. “This gives us evidence of the mechanisms by which nutrition affects intelligence and motivates promising new directions for future research in nutritional cognitive neuroscience.”

About this neuroscience research article

This work was conducted through a partnership between the University of Illinois and Abbott Nutrition at the Center for Nutrition, Learning and Memory.

Source: Aron Barbey – University of Illinois
Image Source: image is credited to Julie McMahon.
Original Research: Abstract for “Nutritional status, brain network organization, and general intelligence” by Zamroziewicz MK, Talukdar MT, Zwilling CE, and Barbey AK in NeuroImage. Published online August 15 2017 doi:10.1016/j.neuroimage.2017.08.043

Cite This Article

[cbtabs][cbtab title=”MLA”]University of Illinois “Nutrition Has Benefits For Brain Organization.” NeuroscienceNews. NeuroscienceNews, 9 September 2017.
<>.[/cbtab][cbtab title=”APA”]University of Illinois (2017, September 9). Nutrition Has Benefits For Brain Organization. NeuroscienceNew. Retrieved September 9, 2017 from[/cbtab][cbtab title=”Chicago”]University of Illinois “Nutrition Has Benefits For Brain Organization.” (accessed September 9, 2017).[/cbtab][/cbtabs]


Nutritional status, brain network organization, and general intelligence

The high energy demands of the brain underscore the importance of nutrition in maintaining brain health and further indicate that aspects of nutrition may optimize brain health, in turn enhancing cognitive performance. General intelligence represents a critical cognitive ability that has been well characterized by cognitive neuroscientists and psychologists alike, but the extent to which a driver of brain health, namely nutritional status, impacts the neural mechanisms that underlie general intelligence is not understood. This study therefore examined the relationship between the intrinsic connectivity networks supporting general intelligence and nutritional status, focusing on nutrients known to impact the metabolic processes that drive brain function. We measured general intelligence, favorable connective architecture of seven intrinsic connectivity networks, and seventeen plasma phospholipid monounsaturated and saturated fatty acids in a sample of 99 healthy, older adults. A mediation analysis was implemented to investigate the relationship between empirically derived patterns of fatty acids, general intelligence, and underlying intrinsic connectivity networks. The mediation analysis revealed that small world propensity within one intrinsic connectivity network supporting general intelligence, the dorsal attention network, was promoted by a pattern of monounsaturated fatty acids. These results suggest that the efficiency of functional organization within a core network underlying general intelligence is influenced by nutritional status. This report provides a novel connection between nutritional status and functional network efficiency, and further supports the promise and utility of functional connectivity metrics in studying the impact of nutrition on cognitive and brain health.

“Nutritional status, brain network organization, and general intelligence” by Zamroziewicz MK, Talukdar MT, Zwilling CE, and Barbey AK in NeuroImage. Published online August 15 2017 doi:10.1016/j.neuroimage.2017.08.043

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.