Neanderthal Gene Gives Clues to Human Brain Evolution

Summary: Researchers report modern humans who carry particular Neanderthal DNA fragments have slightly less rounded heads. The findings shed light on the evolution of modern brain shape and function.

Source: Cell Press.

A distinctive feature of modern humans is our round (globular) skulls and brains. On December 13, in the journal Current Biology, researchers report that present-day humans who carry particular Neanderthal DNA fragments have heads that are slightly less rounded, revealing genetic clues to the evolution of modern brain shape and function.

“We captured subtle variations in endocranial shape that likely reflect changes in the volume and connectivity of certain brain areas,” says Philipp Gunz, a paleoanthropologist at the Max Planck Institute for Evolutionary Anthropology, who co-led the study with Amanda Tilot of the Max Planck Institute for Psycholinguistics.

“Our aim was to identify potential candidate genes and biological pathways that are related to brain globularity,” says Amanda Tilot.

To tightly focus their search, they took advantage of the fact that living humans with European ancestry carry rare fragments of Neanderthal DNA buried in their genomes, as a result of interbreeding between Neanderthals and the ancestors of modern Europeans. Different people carry different fragments, which are scattered through the genome.

Gunz, Tilot, and colleagues analyzed cranial shape and identified stretches of Neanderthal DNA in a large sample of modern humans, relying on MRI brain scans and genetic information for about 4,500 people. Based on computed tomographic scans, they computed the endocranial shape differences between Neanderthal fossils and modern human skulls. They used this contrast to assess endocranial shape in thousands of MRI brain scans of living people.

They used information from sequenced genomes of ancient Neanderthal DNA to identify Neanderthal DNA fragments in living humans on chromosomes 1 and 18 that correlated with reduced cranial roundness. These fragments contained two genes already linked to brain development: UBR4, involved in the generation of neurons, and PHLPP1, involved in the development of myelin insulation around nerve cell projections.

“We know from other studies that completely disrupting UBR4 or PHLPP1 can have major consequences for brain development,” says senior author Simon Fisher (@ProfSimonFisher), a geneticist at the Max Planck Institute for Psycholinguistics. “Here we found that, in carriers of the relevant Neanderthal fragment, UBR4 is slightly down-regulated in the putamen. For carriers of the Neanderthal PHLPP1 fragment, gene expression is slightly higher in the cerebellum, which would be predicted to have a dampening effect on cerebellar myelination.”

The putamen–part of a network of brain structures called the basal ganglia–and the cerebellum are thought to be important in movement.

“Both brain regions receive direct input from the motor cortex and are involved in the preparation, learning, and sensorimotor coordination of movements,” says Gunz. “The basal ganglia also contribute to diverse cognitive functions, in memory, attention, planning, skill learning, and potentially speech and language evolution.”

brain scans
This image shows a CT scan of the Neanderthal fossil (left) with a typical elongated endocranial imprint (red) and a CT scan of a modern human (right) showing the characteristic globular endocranial shape (blue). NeuroscienceNews.com image is credited to Philipp Gunz.

The researchers stress that the effects of carrying these rare Neanderthal fragments are subtle and only detectable in a very large sample size.

“The Neanderthal variants lead to small changes in gene activity and only push people slightly towards a less globular brain shape,” says Fisher. “This is just our first glimpse of the molecular underpinnings of this phenotype, which is likely to involve many other genes.”

The researchers are preparing to scale up their approach and apply it to tens of thousands of people. That will enable them to carry out a fully genome-wide screen to reveal additional genes associated with cranial roundness and other biological characteristics.

“The interdisciplinary approach that we developed for this study could be applied more broadly to unresolved questions about human brain evolution,” says Fisher.

About this neuroscience research article

Funding: This research was supported by the Max Planck Society, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, BBMRI-NL, Hersenstichting-Nederland, NWO, European Union FP7, NIH, BMBF Germany, Federal State, Ministry of Cultural Affairs & Social Ministry of Mecklenburg-West Pomerania, Siemens Healthineers, InterSystems (Caché-Campus), German Research Foundation, Nomis Foundation.

Source: Erin Kohnke – Cell Press
Publisher: Organized by NeuroscienceNews.com.
Image Source: NeuroscienceNews.com image is credited to Philipp Gunz.
Original Research: Open access research for “Neanderthal Introgression Sheds Light on Modern Human Endocranial Globularity” by Gunz et al. in Current Biology. Published December 13 2018.
doi:10.1016/j.cub.2018.10.065

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]Cell Press”Neanderthal Gene Gives Clues to Human Brain Evolution.” NeuroscienceNews. NeuroscienceNews, 13 December 2018.
<https://neurosciencenews.com/Neanderthal-gene-brain-evolution-10336/>.[/cbtab][cbtab title=”APA”]Cell Press(2018, December 13). Neanderthal Gene Gives Clues to Human Brain Evolution. NeuroscienceNews. Retrieved December 13, 2018 from https://neurosciencenews.com/Neanderthal-gene-brain-evolution-10336/[/cbtab][cbtab title=”Chicago”]Cell Press”Neanderthal Gene Gives Clues to Human Brain Evolution.” https://neurosciencenews.com/Neanderthal-gene-brain-evolution-10336/ (accessed December 13, 2018).[/cbtab][/cbtabs]


Abstract

Neanderthal Introgression Sheds Light on Modern Human Endocranial Globularity

One of the features that distinguishes modern humans from our extinct relatives and ancestors is a globular shape of the braincase. As the endocranium closely mirrors the outer shape of the brain, these differences might reflect altered neural architecture. However, in the absence of fossil brain tissue, the underlying neuroanatomical changes as well as their genetic bases remain elusive. To better understand the biological foundations of modern human endocranial shape, we turn to our closest extinct relatives: the Neanderthals. Interbreeding between modern humans and Neanderthals has resulted in introgressed fragments of Neanderthal DNA in the genomes of present-day non-Africans. Based on shape analyses of fossil skull endocasts, we derive a measure of endocranial globularity from structural MRI scans of thousands of modern humans and study the effects of introgressed fragments of Neanderthal DNA on this phenotype. We find that Neanderthal alleles on chromosomes 1 and 18 are associated with reduced endocranial globularity. These alleles influence expression of two nearby genes, UBR4 and PHLPP1, which are involved in neurogenesis and myelination, respectively. Our findings show how integration of fossil skull data with archaic genomics and neuroimaging can suggest developmental mechanisms that may contribute to the unique modern human endocranial shape.

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.