Disrupted genetic clocks in schizophrenia-affected brains reveal clues to the disease

Summary: Gene expression rhythms in the brains of those with schizophrenia are highly disrupted a new study reports. The expression of genes is significantly different in those with schizophrenia who died at night compared to the general population. The findings provide new insight into a potential mechanism that underlies gene expression in the dorsolateral prefrontal cortex in those with schizophrenia.

Source: University of Pittsburgh

Rhythms in gene expression in the brain are highly disrupted in people with schizophrenia, according to a new University of Pittsburgh-led study.

The findings, published today by researchers from the Pitt’s School of Medicine in the journal Nature Communications, also suggest that researchers studying schizophrenia-linked genes in the brain could have missed important clues that would help understand the disease.

“Our study shows for the first time that there are significant disruptions in the daily timing of when some genes are turned on or off, which has implications for how we understand the disease at a molecular level,” said senior author Colleen McClung, Ph.D., professor of psychiatry at Pitt’s School of Medicine.

Many bodily functions run on a 24-hour cycle, called a circadian rhythm, which extends to how genes are expressed within cells. Some genes turn on or off at certain times of the day or night.

In this study, McClung and colleagues analyzed gene expression data from the dorsolateral prefrontal cortex — a brain region responsible for cognition and memory — from 46 people with schizophrenia and 46 sex- and age-matched healthy subjects. The data was obtained from the CommonMind Consortium, a public-private partnership that has curated a rich brain tissue and data bank for studying neuropsychiatric disorders.

By knowing the time of death, the researchers were able to use a statistical method to determine changes in the rhythmicity of different genes, which revealed some interesting patterns.

McClung explained the findings by drawing an analogy of gene expression to electrical appliances in a house.

“In a normal house — like a healthy brain — let’s say the lights are turned on at night, but the refrigerator needs to be on all the time. What we saw was that in a schizophrenia-affected brain, the lights are on all day and the refrigerator shuts off at night.”

This is problematic, explains McClung, because it can affect how cells function. In their samples, the genes that gained rhythmicity were involved in how mitochondria — the cell’s powerhouse — functions, and those that lost rhythmicity were linked to inflammation.

This shows a woman surrounded by clocks

Many bodily functions run on a 24-hour cycle, called a circadian rhythm, which extends to how genes are expressed within cells. Some genes turn on or off at certain times of the day or night. The image is in the public domain.

The results also have implications for other researchers studying the genetics of schizophrenia, according to Marianne Seney, Ph.D., assistant professor of psychiatry at Pitt’s School of Medicine and the study’s first author. By not considering circadian rhythms, they could be missing out on important findings.

When Seney and McClung compared gene expression in brains from people who died during the day, the control and schizophrenia subjects were not different, but in those who died at night, there were major differences, since genes that had gained a rhythm had hit their low point during the night.

Seney alludes to the analogy of the house. “If we only looked to see if the refrigerator was on during the day we would see no difference, but at night, there would be one.”

Additional authors on the study include Kelly Cahill, John F. Enwright III, Ph.D., Ryan W. Logan, Ph.D., Wei Zong, and George Tseng, Sc.D., all of Pitt, and Zhiguang Huo, Ph.D., of the University of Florida.

Funding: The study was supported by National Institutes of Health grant MH111601 and the Brain and Behavior Research Foundation.

About this neuroscience research article

Source:
University of Pittsburgh
Media Contacts:
Arvind Suresh – University of Pittsburgh
Image Source:
The image is in the public domain.

Original Research: Open access
“Diurnal rhythms in gene expression in the prefrontal cortex in schizophrenia”. Marianne L. Seney, Kelly Cahill, John F. Enwright III, Ryan W. Logan, Zhiguang Huo, Wei Zong, George Tseng & Colleen A. McClung.
Nature Communications. doi:10.1038/s41467-019-11335-1

Abstract

Diurnal rhythms in gene expression in the prefrontal cortex in schizophrenia

Schizophrenia is associated with disrupted cognitive control and sleep-wake cycles. Here we identify diurnal rhythms in gene expression in the human dorsolateral prefrontal cortex (dlPFC), in schizophrenia and control subjects. We find significant diurnal (24 h) rhythms in control subjects, however, most of these transcripts are not rhythmic in subjects with schizophrenia. Instead, subjects with schizophrenia have a different set of rhythmic transcripts. The top pathways identified in transcripts rhythmic only in subjects with schizophrenia are associated with mitochondrial function. Importantly, these rhythms drive differential expression patterns of these and several other genes that have long been implicated in schizophrenia (including BDNF and GABAergic-related transcripts). Indeed, differential expression of these transcripts is only seen in subjects that died during the night, with no change in subjects that died during the day. These data provide insights into a potential mechanism that underlies changes in gene expression in the dlPFC with schizophrenia.

Feel free to share this Genetics News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive the latest neuroscience headlines and summaries sent to your email daily from NeuroscienceNews.com
We hate spam and only use your email to contact you about newsletters. We do not sell email addresses. You can cancel your subscription any time.
No more articles