Waking Up the Visual System

In rodents awakened from anesthesia, two populations of neurons in the visual cortex change the way they fire in response to visual stimuli.

The ways that neurons in the brain respond to a given stimulus depends on whether an organism is asleep, drowsy, awake, paying careful attention or ignoring the stimulus. However, while the properties of neural circuits in the visual cortex are well known, the mechanisms responsible for the different patterns of activity in the awake and drowsy states remain poorly understood. A team of researchers led by Tadaharu Tsumoto from the RIKEN Brain Science Institute has observed the changes in activity that occur in rodents on waking from anesthesia.

The research team used a technique called two-photon functional calcium imaging to observe the activity of cells in the visual cortex of rats while they are anesthetized and exposed to a visual stimulus of an image moving across a screen. Using rats with inhibitory neurons labeled with a green fluorescent protein, the researchers were able to measure the activity separately in populations of inhibitory and excitatory neurons. The neuronal activity in response to visual stimulation under anesthesia was recorded, and then the rats were allowed to wake and the change in activity of the two populations of neurons was observed.

This image shows a slide of the three types of cells in the rat visual cortex.

Two-photon image of the three types of cells in the visual cortex of a rat. Neuronal activity is measured via changes in fluorescence intensity. Green cells are inhibitory neurons, white cells are excitatory neurons, and red cells are astrocytes. Credit R. Kimura M et al.

Tsumoto’s team found that inhibitory neurons responded more reliably and with stronger activity to visual stimuli in the awake state than in the anesthetized state. The response of the excitatory neurons had a shorter decay time in the awake state, which means that their activity was more tightly linked to the presentation of the visual stimulus than when the animal was under the influence of anesthesia.

These changes that occur during wakefulness allow neurons in the visual cortex to respond more reliably to visual stimuli in their environment. “If animals are awakened from the drowsy state by howls or footsteps of enemies, the sensitivity or resolution of moving visual stimuli will increase so that they can more effectively judge how fast and from which location the enemies are coming,” explains Tsumoto.

The team then found that the basal forebrain region of the brain, which is known to play a role in state-dependent changes in cortical activity through its acetylcholine neurons, is responsible for these shifts in responses of neurons in the visual cortex of mice during wakefulness. They found that stimulating the basal forebrain of anesthetized animals could make visual cortical neurons take on the firing properties of the awake state. These findings highlight the role of the basal forebrain in modulating the responses of visual cortical neurons during wakefulness.

Notes about this neuroscience research

Contact: Tadaharu Tsumoto – RIKEN Research
Source: RIKEN Research press release
Image Source: The image is credited to R. Kimura M et al. and is adapted from the RIKEN Research press release
Original Research: Abstract for “Curtailing effect of awakening on visual responses of cortical neurons by cholinergic activation of inhibitory circuits” by Rui Kimura, Mir-Shahram Safari, Javad Mirnajafi-Zadeh, Rie Kimura, Teppei Ebina, Yuchio Yanagawa, Kazuhiro Sohya, and Tadaharu Tsumoto in Journal of Neuroscience. Published online July 24 2014 doi:10.1523/JNEUROSCI.0863-14.2014

Share this Neuroscience News
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive the latest neuroscience headlines and summaries sent to your email daily from NeuroscienceNews.com
We hate spam and only use your email to contact you about newsletters. We do not sell email addresses. You can cancel your subscription any time.