New quantum material could warn of neurological disease

Summary: A new quantum sensor is able to automatically receive hydrogen when placed beneath a brain slice. Researchers say this could be the first step in creating a pathway that builds a computer device to store and transfer real memories, in essence, allowing for the ‘upload’ of memory.

Source: Purdue University

What if the brain could detect its own disease? Researchers have been trying to create a material that “thinks” like the brain does, which would be more sensitive to early signs of neurological diseases such as Parkinson’s.

Thinking is a long way off, but Purdue University and Argonne National Laboratory researchers have engineered a new material that can at least “listen.”

The lingua franca is ionic currents, which help the brain perform a particular reaction, needed for something as basic as sending a signal to breathe. Detecting ions means also detecting the concentration of a molecule, which serves as an indicator of the brain’s health.

In a study published in Nature Communications, researchers demonstrate the ability of a quantum material to automatically receive hydrogen when placed beneath an animal model’s brain slice. Quantum means that the material has electronic properties that both can’t be explained by classical physics, and that gives it a unique edge over other materials used in electronics, such as silicon.

The edge, in this case, is strong, “correlated” electrons that make the material extra sensitive and extra tunable.

“The goal is to bridge the gap between how electronics think, which is via electrons, and how the brain thinks, which is via ions. This material helped us find a potential bridge,” said Hai-Tian Zhang, a Gilbreth postdoctoral fellow in Purdue’s College of Engineering and first author on the paper.

In the long run, this material might even bring the ability to “download” your brain, the researchers say.

“Imagine putting an electronic device in the brain, so that when natural brain functions start deteriorating, a person could still retrieve memories from that device,” said Shriram Ramanathan, a Purdue professor of materials engineering whose lab specializes in developing brain-inspired technology.

“We can confidently say that this material is a potential pathway to building a computing device that would store and transfer memories,” he said.

The researchers tested this material on two molecules: Glucose, a sugar essential for energy production, and dopamine, a chemical messenger that regulates movement, emotional responses and memory.

Because dopamine amounts are typically low in the brain, and even lower for people with Parkinson’s disease, detecting this chemical has been notoriously difficult. But detecting dopamine levels early would mean sooner treatment of the disease.

This shows the quantum biosensor that was implanted

The black rectangle beneath these gold rungs is a new quantum material capable of “listening” to the brain by grabbing atoms, which the brain naturally uses to communicate. The image is credited to Purdue University image/Hai-Tian Zhang.

“This quantum material is about nine times more sensitive to dopamine than methods that we use currently in animal models,” said Alexander Chubykin, an assistant professor of biological sciences in the Purdue Institute for Integrative Neuroscience, based in Discovery Park.

The quantum material owes its sensitivity to strong interactions between so-called “correlated electrons.” The researchers first found that when they placed the material in contact with glucose molecules, the oxides would spontaneously grab hydrogen from the glucose via an enzyme. The same happened with dopamine released from a mouse brain slice.

The strong affinity to hydrogen, as shown when researchers at Argonne National Laboratory created simulations of the experiments, allowed the material to extract atoms on its own – without a power source.

“The fact that we didn’t provide power to the material for it to take in hydrogen means that it could bring very low-power electronics with high sensitivity,” Ramanathan said. “This could be helpful for probing unexplored environments, as well.”

The researchers also say that this material could sense the atoms of a range of molecules, beyond just glucose and dopamine. The next step is creating a way for the material to “talk back” to the brain.

The work was supported by multiple entities, including the Gilbreth Fellowship by the College of Engineering at Purdue University, the National Science Foundation, the Air Force Office for Scientific Research, the National Institute of Mental Health, the Office of Naval Research and the U.S. Department of Energy Office of Science.

This research also aligns with Purdue’s Giant Leaps celebration, acknowledging the university’s global advancements made in AI and health as part of Purdue’s 150th anniversary. This is one of the four themes of the yearlong celebration’s Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

About this neuroscience research article

Source:
Purdue University
Media Contacts:
Kayla Wiles – Purdue University
Image Source:
The image is credited to Purdue University image/Hai-Tian Zhang.

Original Research: Open access
“Perovskite nickelates as bio-electronic interfaces”
Hai-Tian Zhang, Fan Zuo, Feiran Li, Henry Chan, Qiuyu Wu, Zhan Zhang, Badri Narayanan, Koushik Ramadoss, Indranil Chakraborty, Gobinda Saha, Ganesh Kamath, Kaushik Roy, Hua Zhou, Alexander A. Chubykin, Subramanian K. R. S. Sankaranarayanan, Jong Hyun Choi & Shriram Ramanathan. Nature Communications volume 10, Article number: 1651 (2019) doi:10.1038/s41467-019-09660-6

Abstract

Perovskite nickelates as bio-electronic interfaces

Functional interfaces between electronics and biological matter are essential to diverse fields including health sciences and bio-engineering. Here, we report the discovery of spontaneous (no external energy input) hydrogen transfer from biological glucose reactions into SmNiO3, an archetypal perovskite quantum material. The enzymatic oxidation of glucose is monitored down to ~5 × 10−16 M concentration via hydrogen transfer to the nickelate lattice. The hydrogen atoms donate electrons to the Ni d orbital and induce electron localization through strong electron correlations. By enzyme specific modification, spontaneous transfer of hydrogen from the neurotransmitter dopamine can be monitored in physiological media. We then directly interface an acute mouse brain slice onto the nickelate devices and demonstrate measurement of neurotransmitter release upon electrical stimulation of the striatum region. These results open up avenues for use of emergent physics present in quantum materials in trace detection and conveyance of bio-matter, bio-chemical sciences, and brain-machine interfaces.

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive the latest neuroscience headlines and summaries sent to your email daily from NeuroscienceNews.com
We hate spam and only use your email to contact you about newsletters. We do not sell email addresses. You can cancel your subscription any time.
No more articles