MRI Scans Detect “Brain Rust” in Schizophrenia

Summary: According to a new study, the brain blocks the ability for creating new memories shortly after waking in order to prevent the disruption of the stabilization of memory consolidation that occurs during sleep.

Source: ACNP.

A damaging chemical imbalance in the brain may contribute to schizophrenia, according to research presented at the American College of Neuropsychopharmacology Annual Meeting in Hollywood, Florida.

Using a new kind of MRI measurement, neuroscientists reported higher levels of oxidative stress in patients with schizophrenia, when compared both to healthy individuals and those with bipolar disorder.

“Intensive energy demands on brain cells leads to accumulation of highly reactive oxygen species, such as free radicals and hydrogen peroxide,” according to the study’s lead investigator, Dr. Fei Du, an Assistant Professor of Psychiatry at Harvard Medical School. In schizophrenia, excessive oxidation – which involves the same type of chemical reaction that causes metal to corrode into rust – is widely thought to cause inflammation and cellular damage. However, measuring this process in the living human brain has remained challenging.

Du and colleagues at McLean Hospital measured oxidative stress using a novel magnetic resonance spectroscopy technique. This technique uses MRI scanners to non-invasively measure brain concentrations of two molecules, NAD+ and NADH, that give a readout of how well the brain is able to buffer out excessive oxidants.

Image shows a brain model.
Among 21 patients with chronic schizophrenia, Du observed a 53% elevation in NADH compared to healthy individuals of similar age. A similar degree of NADH elevation was seen in newly diagnosed schizophrenia, suggesting that oxidation imbalance is present even in the early stages of illness. NeuroscienceNews.com image is for illustrative purposes only.

Among 21 patients with chronic schizophrenia, Du observed a 53% elevation in NADH compared to healthy individuals of similar age. A similar degree of NADH elevation was seen in newly diagnosed schizophrenia, suggesting that oxidation imbalance is present even in the early stages of illness. More modest NADH increases were also seen in bipolar disorder, which shares some genetic and clinical overlap with schizophrenia.

In addition to offering new insights into the biology of schizophrenia, this finding also provides a potential way to test the effectiveness of new interventions. “We hope this work will lead to new strategies to protect the brain from oxidative stress and improve brain function in schizophrenia,” Du concludes.

About this schizophrenia research article

Funding: This work was supported by grants from MH092704 (F.D.); NARSAD (F.D.); NARSAD (D.O.); MH094594 (D.O.); MH104449 (D.O.); Shervert Frazier Research Institute (B.M.C.).

Source: Erin Colladay – ACNP
Image Source: NeuroscienceNews.com image is in the public domain.
Original Research: The study will be presented at the 55th Annual Meeting of the American College of Neuropsychopharmacology.

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]ACNP “MRI Scans Detect “Brain Rust” in Schizophrenia.” NeuroscienceNews. NeuroscienceNews, 7 December 2016.
<https://neurosciencenews.com/oxidative-stress-schizophrenia-5702/>.[/cbtab][cbtab title=”APA”]ACNP (2016, December 7). MRI Scans Detect “Brain Rust” in Schizophrenia. NeuroscienceNew. Retrieved December 7, 2016 from https://neurosciencenews.com/oxidative-stress-schizophrenia-5702/[/cbtab][cbtab title=”Chicago”]ACNP “MRI Scans Detect “Brain Rust” in Schizophrenia.” https://neurosciencenews.com/oxidative-stress-schizophrenia-5702/ (accessed December 7, 2016).[/cbtab][/cbtabs]

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.