Longer Distance Migratory Birds May Be Smarter

Evidence shows the further birds flew, the more new neurons they had in their brain.

Birds that migrate the greatest distances have more new neurons in the regions of the brain responsible for navigation and spatial orientation, suggests a new paper published in Scientific Reports.

For some time scholars have widely accepted the view that neurons, the cells that specialise in processing and transmitting information and contribute to brain plasticity, continue to be generated in the brains of animals even when they are adults. After being created in one part of the brain, the neurons then migrate to those regions of the brain that need them most.

The international research team, which included scientists from the University of Oxford, focused on the role played by neurons in two species, turtle doves and reed warblers, making their way from Africa to the Middle East or Europe. In both species, the researchers found that the proportion of new neurons increased in line with the migration distance. Interestingly, however, there was a distinct difference between the two species in the areas of the brain that incorporated the new neurons. In reed warblers, birds that migrate as individuals at night, new neurons were found mainly in the hippocampus — a region associated with navigation. In turtle doves, a species that migrates as a group, the new neurons were found mainly in the nidopallium caudolateral, an area associated with communication skills.

The researchers caught 12 turtle doves and six reed warblers in nets in the Jordan Rift Valley in Israel. All the birds were on a migratory flight from Africa, but the researchers were able to estimate the flight distance already taken by each individual by measuring the isotopic signatures on the birds’ feathers. The known values of isotopes of carbon and hydrogen, found in the water, soil and plants, differ according to which part of the world they are located. The researchers matched the known local values of isotopes with the particular values found on the feathers when the bird was captured. When birds lose their old feathers (through moulting) and grow new ones, they incorporate the isotopic signature of where they have been through the food and water they have ingested.

Image shows a Turtle dove.
This is a picture of a Turtle dove. Credit: Guy Barkan.

Then, these migration distances were compared with the amount of new neurons incorporated into the birds’ brains. This was done by selectively colouring brain cells in several relevant regions: once — for identifying new cells, and then a few weeks again for identifying neuron cells. Those coloured twice were identified as new neurons. The researchers discovered that both species show a trend of increasing new neurons in line with migration distance and that different brain regions were affected.

Researcher Dr Uri Roll, from the School of Geography and the Environment at the University of Oxford, said: ‘These preliminary findings suggest a potentially exciting, new avenue of research. What we humans do during the day may actually make us more “brainy” as our regular activities may actually determine how our brains adapt and in which areas. In the long term, there are implications for how species evolve. For example, other research already suggests that birds that hoard food in particular periods incorporate new neurons in brain regions responsible for memory and spatial orientation. This latest paper builds on that work, suggesting that birds that need greater navigational help have more new neurons in that part of the brain while those that need to keep up with the flock incorporate new neurons in a different area.’

About this neuroscience research

The research is led by Tel-Aviv University in collaboration with the University of Ofxord, International Atomic Energy Agency, Austria; and the University of Israel.

Funding: Funding was provided by The National Institute for Psychobiology in Israel and the Open University Research Fund.

Source: University of Oxford
Image Credit: Image is credited to Guy Barkan.
Original Research: Full open access research for “Possible linkage between neuronal recruitment and flight distance in migratory birds” by Shay Barkan, Uri Roll, Yoram Yom-Tov, Leonard I. Wassenaar and Anat Barnea in Scientific Reports. Published online February 24 2016 doi:10.1038/srep21983


Possible linkage between neuronal recruitment and flight distance in migratory birds

New neuronal recruitment in an adult animal’s brain is presumed to contribute to brain plasticity and increase the animal’s ability to contend with new and changing environments. During long-distance migration, birds migrating greater distances are exposed to more diverse spatial information. Thus, we hypothesized that greater migration distance in birds would correlate with the recruitment of new neurons into the brain regions involved with migratory navigation. We tested this hypothesis on two Palearctic migrants – reed warblers (Acrocephalus scirpaceus) and turtle doves (Streptopelia turtur), caught in Israel while returning from Africa in spring and summer. Birds were injected with a neuronal birth marker and later inspected for new neurons in brain regions known to play a role in navigation – the hippocampus and nidopallium caudolateral. We calculated the migration distance of each individual by matching feather isotopic values (δ2H and δ13C) to winter base-maps of these isotopes in Africa. Our findings suggest a positive correlation between migration distance and new neuronal recruitment in two brain regions – the hippocampus in reed warblers and nidopallium caudolateral in turtle doves. This multidisciplinary approach provides new insights into the ability of the avian brain to adapt to different migration challenges.

“Possible linkage between neuronal recruitment and flight distance in migratory birds” by Shay Barkan, Uri Roll, Yoram Yom-Tov, Leonard I. Wassenaar and Anat Barnea in Scientific Reports. Published online February 24 2016 doi:10.1038/srep21983

Feel free to share this neuroscience news.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.