Using Ketamine to Find an Undiscovered Pathway in Depression

Summary: Ketamine treatment leads to an increase in IGF-1, which, in turn, produces an antidepressant effect.

Source: Osaka Metropolitan University

For the 280 million people suffering from depression globally, relief cannot come fast enough. Monoaminergic antidepressants, including selective serotonin reuptake inhibitors (SSRIs) take weeks to months to take effect and do not work for more than one in three patients.

For patients diagnosed with treatment-resistant depression, or in immediate crisis, access to safe, effective, rapid-acting antidepressants can improve lives and decrease suicide.

One current possibility being investigated is ketamine, which can improve depression, even in treatment-resistant patients. Ketamine is an anesthetic used for over 50 years, but it has serious side-effects, including dependence, hallucinations, and delusions.

So, while preclinical studies have shown that a single dose of ketamine can have beneficial long-term effects on mental health and is only used to treat depression as a last resort.

There are good reasons to be cautious; in addition to the side-effects, the way ketamine alters brain chemistry is not fully understood. If the biological mechanisms in the brain that ketamine influences are discovered, new drugs could be developed to target the beneficial antidepressant effect specifically.

The study led by Professor Kondo demonstrated ketamine treatment led to an increase in insulin-like growth factor 1 (IGF-1), a known antidepressant brain molecule. However, they did not know if this was linked to previously discovered ketamine related antidepressant molecules like brain-derived neutrophic factor (BDNF).

This shows a depressed looking woman
This discovery indicates that ketamine uses a previously unknown pathway that produces an antidepressant effect. Image is in the public domain

They confirmed IGF-1 produced an antidepressant effect then demonstrated that they could switch it off by blocking it with an IGF-1 neutralizing antibody.

After demonstrating they could switch off IGF-1, the researchers followed up with a separate experiment. Previous studies have shown that ketamine increases BDNF, a protein that promotes nerve growth, so the researchers wanted to check if IGF-1 and BDNF were working together or separately.

They tested whether IGF-1 and BDNF neutralizing antibodies blocked the other proteins antidepressant effect, they did not, leading the researchers to conclude that IGF-1 and BDNF work through their own independent pathways.

This discovery indicates that ketamine uses a previously unknown pathway that produces an antidepressant effect. The researchers hypothesized that the single dose of ketamine increases the level of IGF-1 in the brain, persistently changing prefrontal cortex nerves and causing them to increase their number of stable connections.

The link between ketamine and IGF-1 presents a brand-new direction for future studies investigating antidepressants that target IGF-1 directly.

About this ketamine and depression research news

Author: Press Office
Source: Osaka Metropolitan University
Contact: Press Office – Osaka Metropolitan University
Image: The image is in the public domain

Original Research: Open access.
IGF-1 release in the medial prefrontal cortex mediates the rapid and sustained antidepressant-like actions of ketamine” by Satoshi Deyama et al. Translational Psychiatry


IGF-1 release in the medial prefrontal cortex mediates the rapid and sustained antidepressant-like actions of ketamine

Ketamine, an N-methyl-D-aspartate receptor antagonist, exerts rapid and sustained antidepressant actions. Preclinical studies demonstrated that the release of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor in the medial prefrontal cortex (mPFC) is essential for the antidepressant-like effects of ketamine.

However, the role of other neurotrophic factors in the antidepressant-like effects of ketamine has not been fully investigated. Since the intra-mPFC infusion of insulin-like growth factor 1 (IGF-1) reportedly produced antidepressant-like effects, the present study examined the role of endogenous intra-mPFC IGF-1 signaling in the antidepressant-like actions of ketamine.

In vivo microdialysis showed that ketamine (10 and 30 mg/kg) significantly increased extracellular IGF-1 levels in the mPFC of male C57BL/6J mice for at least 5 h. Infusion of an IGF-1 neutralizing antibody (nAb; 160 ng/side) into the mPFC 15 min before or 2 h after ketamine injection blocked the antidepressant-like effects of ketamine in three different behavioral paradigms (forced swim, female urine sniffing, and novelty-suppressed feeding tests were conducted 1, 3 and 4 days post-ketamine, respectively).

The ketamine-like antidepressant-like actions of the intra-mPFC infusion of BDNF (100 ng/side) and IGF-1 (50 ng/side) respectively were not blocked by co-infused IGF-1 nAb and BDNF nAb (200 ng/side).

Moreover, intra-mPFC infusion of IGF-1 nAb 2 h post-ketamine blocked the antidepressant-like effects of ketamine in a murine lipopolysaccharide (LPS)-induced depression model. Intra-mPFC IGF-1 infusion also produced antidepressant-like effects in the LPS-challenged mice via mechanistic target of rapamycin complex 1 activation.

These results suggest that persistent release of IGF-1, independently of BDNF, in the mPFC is essential for the antidepressant-like actions of ketamine.

Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.