How the Brain Separates Relevant and Irrelevant Information

Summary: Researchers have developed a new theory that outlines how the brain separates relevant from irrelevant information.

Source: NYU.

Imagine yourself sitting in a noisy café trying to read. To focus on the book at hand, you need to ignore the surrounding chatter and clattering of cups, with your brain filtering out the irrelevant stimuli coming through your ears and “gating” in the relevant ones in your vision—words on a page.

In a new paper in the journal Nature Communications, New York University researchers offer a new theory, based on a computational model, on how the brain separates relevant from irrelevant information in these and other circumstances.

“It is critical to our everyday life that our brain processes the most important information out of everything presented to us,” explains Xiao-Jing Wang, Global Professor of Neural Science at NYU and NYU Shanghai and the paper’s senior author. “Within an extremely complicated neural circuit in the brain, there must be a gating mechanism to route relevant information to the right place at the right time.”

The analysis focuses on inhibitory neurons—the brain’s traffic cops that help ensure proper neurological responses to incoming stimuli by suppressing other neurons and working to balance excitatory neurons, which aim to stimulate neuronal activity.

“Our model uses a fundamental element of the brain circuit, involving multiple types of inhibitory neurons, to achieve this goal,” Wang adds. “Our computational model shows that inhibitory neurons can enable a neural circuit to gate in specific pathways of information while filtering out the rest.”

In their analysis, led by Guangyu Robert Yang, a doctoral candidate in Wang’s lab, the researchers devised a model that maps out a more complicated role for inhibitory neurons than had previously been suggested.

Of particular interest to the team was a specific subtype of inhibitory neurons that targets the excitatory neurons’ dendrites—components of a neuron where inputs from other neurons are located. These dendrite-targeting inhibitory neurons are labeled by a biological marker called somatostatin and can be studied selectively by experimentalists. The researchers proposed that they not only control the overall inputs to a neuron, but also the inputs from individual pathways—for example, the visual or auditory pathways converging onto a neuron.

Image shows a drawing of a head with the brain exposed.
Researchers offer a new theory, based on a computational model, on how the brain separates relevant from irrelevant information in these and other circumstances. Neurosciencenews image is for illustrative purposes only.

“This was thought to be difficult because the connections from inhibitory neurons to excitatory neurons appeared dense and unstructured,” observes Yang. “Thus a surprising finding from our study is that the precision required for pathway-specific gating can be realized by inhibitory neurons.”

The study’s authors used computational models to show that even with the seemingly random connections, these dendrite-targeting neurons can gate individual pathways by aligning with excitatory inputs through different pathways. They showed that this alignment can be realized through synaptic plasticity—a brain mechanism for learning through experience.

About this neuroscience research article

The study’s other co-author was John David Murray, a postdoctoral researcher at the time of the work and now an assistant professor at Yale University.

Funding: The work was supported by grants from the National Institute of Health (R01MH062349) and the Office of Naval Research (N00014-13-1-0297).

Source: James Devitt – NYU
Image Source: This NeuroscienceNews.com image is in the public domain.
Original Research:Full open access research for “A dendritic disinhibitory circuit mechanism for pathway-specific gating” by Guangyu Robert Yang, John D. Murray and Xiao-Jing Wang in Nature Communications. Published online September 20 2016 doi:10.1038/ncomms12815

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]NYU. “How the Brain Separates Relevant and Irrelevant Information.” NeuroscienceNews. NeuroscienceNews, 20 September 2016.
<https://neurosciencenews.com/information-sifting-computational-neuroscience-5085/>.[/cbtab][cbtab title=”APA”]NYU. (2016, September 20). How the Brain Separates Relevant and Irrelevant Information. NeuroscienceNews. Retrieved September 20, 2016 from https://neurosciencenews.com/information-sifting-computational-neuroscience-5085/[/cbtab][cbtab title=”Chicago”]NYU. “How the Brain Separates Relevant and Irrelevant Information.” https://neurosciencenews.com/information-sifting-computational-neuroscience-5085/ (accessed September 20, 2016).[/cbtab][/cbtabs]


Abstract

A dendritic disinhibitory circuit mechanism for pathway-specific gating

While reading a book in a noisy café, how does your brain ‘gate in’ visual information while filtering out auditory stimuli? Here we propose a mechanism for such flexible routing of information flow in a complex brain network (pathway-specific gating), tested using a network model of pyramidal neurons and three classes of interneurons with connection probabilities constrained by data. We find that if inputs from different pathways cluster on a pyramidal neuron dendrite, a pathway can be gated-on by a disinhibitory circuit motif. The branch-specific disinhibition can be achieved despite dense interneuronal connectivity, even with random connections. Moreover, clustering of input pathways on dendrites can naturally emerge through synaptic plasticity regulated by dendritic inhibition. This gating mechanism in a neural circuit is further demonstrated by performing a context-dependent decision-making task. The model suggests that cognitive flexibility engages top-down signalling of behavioural rule or context that targets specific classes of inhibitory neurons.

“A dendritic disinhibitory circuit mechanism for pathway-specific gating” by Guangyu Robert Yang, John D. Murray and Xiao-Jing Wang in Nature Communications. Published online September 20 2016 doi:10.1038/ncomms12815

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.