Sweet Genetics: Common Pathway Underlies Sweet Taste Perception

A new study from the Monell Center and collaborating institutions suggests that a single set of genes affects a person’s perception of sweet taste, regardless of whether the sweetener is a natural sugar or a non-caloric sugar substitute.

“Eating too much sugar is often seen as a personal weakness. However, our work suggests that part of what determines our perception of sweetness is inborn in our genetic makeup,” said study author Danielle Reed, PhD, a behavioral geneticist at Monell. “Just as people born with a poor sense of hearing may need to turn up the volume to hear the radio, people born with weak sweet taste may need an extra teaspoon of sugar in their coffee to get the same sweet punch.”

In the study, published in Twin Research and Human Genetics, researchers tested 243 pairs of monozygotic (MZ, or identical) twins, 452 pairs of dizygotic (DZ, or fraternal) twins, and 511 unpaired individuals. Each person tasted and then rated the intensity of four sweet solutions: fructose, glucose, aspartame, and neohesperidine dihydrochalcone (NHDC). The first two are natural sugars, while the latter two are synthetic, non-caloric sweeteners.

This image shows a woman's lips covered in candies.
Scientists are still working to unravel the molecular processes behind how we detect the many different types of sweet molecules. Image is for illustrative purposes only.

MZ twins have nearly identical genes while DZ twins share only about half of their genes. Studying twin pairs allowed the researchers to determine how much influence the twins’ shared genetics contributed to their perception of sweet taste intensity.

The resulting data indicate that genetic factors account for approximately 30 percent of person-to-person variance in sweet taste perception.

The study also revealed that those who perceived the natural sugars as weakly sweet experienced the sugar substitutes as similarly weak. This suggests that there may be a shared pathway in the perception of natural sugar and high-potency sweetener intensity.

Scientists are still working to unravel the molecular processes behind how we detect the many different types of sweet molecules. Earlier studies with mice showed that there is one main detection pathway for non-caloric sweeteners and natural sugars, but also a second pathway that responds only to sugars. The current findings suggest that these two pathways might converge into a single experience of sweetness intensity.

The current study also found little evidence for a shared environmental influence on sweet perception. Assuming twin pairs took part in communal meals during childhood, this result challenges the common belief that access to foods high in sugar may make children insensitive to sweetness.

“Our findings indicate that shared experiences, such as family meals, had no detectable ability to make twins more similar in taste measures,” Reed said. “The next big question is if, and how, genes and early experiences interact to affect food choice.”

Understanding the genetic differences that affect an individual’s perception of sweetness may eventually help food manufacturers reduce the amount of sugars and sweeteners they add to food.

“Even though almost everyone – consumers, physicians, and public health officials – wants to decrease the amount of sugar in our diets, right now we have no tool that has the sensory equivalence of sugar,” said Reed. “However, if we can understand why some people have weaker sweetness perception, we might be able to adjust this attribute so we could reduce the amount of sugar in foods.”

“The genetics of bitterness have been widely studied in past decades, but there’s much less genetic information on sweetness,” said lead author Daniel Hwang, a PhD candidate at the University of Queensland, who also is affiliated with the QIMR Berghofer Medical Research Institute. “Our next steps are to identify key genomic regions shared by people who are weak sweet tasters, in the hopes of understanding their weaker perception.”

About this genetics research

Also contributing to the research were Paul Breslin of Monell and Rutgers University, and Gu Zhu, Nicholas Martin, and Margaret Wright of QIMR Berghofer Medical Research Institute.

Funding: Funding was provided by the National Institute of Deafness and Other Communication Disorders (grants R01DC02995 and R01DC004698) of the National Institutes of Health and by the Australian National Health and Medical Research Council (241944 and 1031119). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or other funders.

Source: Monell
Image Credit: The image is in the public domain
Original Research: Abstract for “A Common Genetic Influence on Human Intensity Ratings of Sugars and High-Potency Sweeteners” by Liang-Dar Hwang, Gu Zhu, Paul A. S. Breslin, Danielle R. Reed, Nicholas G. Martin and Margaret J. Wright in Twin Research and Human Genetics. Published only July 16 2015 doi:10.1017/thg.2015.42


Abstract

A Common Genetic Influence on Human Intensity Ratings of Sugars and High-Potency Sweeteners

The perception of sweetness varies among individuals but the sources of this variation are not fully understood. Here, in a sample of 1,901 adolescent and young adults (53.8% female; 243 MZ and 452 DZ twin pairs, 511 unpaired individuals; mean age 16.2 ± 2.8, range 12–26 years), we studied the variation in the perception of sweetness intensity of two monosaccharides and two high-potency sweeteners: glucose, fructose, neohesperidine dihydrochalcone (NHDC), and aspartame. Perceived intensity for all sweeteners decreased with age (2–5% per year) and increased with the history of otitis media (6–9%). Males rated aspartame slightly stronger than females (7%). We found similar heritabilities for sugars (glucose: h2 = 0.31, fructose: h2 = 0.34) and high-potency sweeteners (NHDC: h2 = 0.31, aspartame: h2 = 0.30); all were in the modest range. Multivariate modeling showed that a common genetic factor accounted for >75% of the genetic variance in the four sweeteners, suggesting that individual differences in perceived sweet intensity, which are partly due to genetic factors, may be attributed to a single set of genes. This study provided evidence of the shared genetic pathways between the perception of sugars and high-potency sweeteners.

“A Common Genetic Influence on Human Intensity Ratings of Sugars and High-Potency Sweeteners” by Liang-Dar Hwang, Gu Zhu, Paul A. S. Breslin, Danielle R. Reed, Nicholas G. Martin and Margaret J. Wright in Twin Research and Human Genetics. Published only July 16 2015 doi:10.1017/thg.2015.42

Feel free to share this neuroscience news.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.