Aggressive Growth of Common Brain Tumor Linked to Single Gene

Summary: Researchers implicate the FOXM1 gene as a common driver in aggressive meningioma brain cancer.

Source: UCSF.

UC San Francisco scientists have uncovered a common genetic driver of aggressive meningiomas, which could help clinicians detect such dangerous cancers earlier and lead to new therapies aimed at curing these difficult-to-treat tumors.

Meningiomas are tumors that grow from the layer of tissue that surrounds the brain and spinal cord and are the most common central nervous system tumor in the United States. Although the vast majority are benign and grow slowly, over time they can lead to headaches, seizures, neurological deficits and even death.

Most meningiomas are treatable with radiation therapy or surgery. However, approximately twenty percent of meningiomas are aggressive and can recur even after surgery and radiation therapy. In the new study, published online March 27, 2018, in Cell Reports, a team led by UCSF’s David Raleigh, MD, PhD, found that increased activity of a gene known as FOXM1 appears to be responsible for the aggressive growth and frequent recurrence of these tumors.

Raleigh, an assistant professor of radiation oncology and of neurological surgery and member of the UCSF Helen Diller Family Comprehensive Cancer Center, hopes the finding will be an important step towards correctly diagnosing these more aggressive tumors: “There haven’t been as many studies on what drives ‘problem’ meningiomas,” he said. “For clinicians, patients, and families, these are the most heartbreaking cases because we expect to cure meningiomas, but sometimes we can’t and we don’t always do a good job of differentiating ‘good’ and ‘bad’ meningiomas ahead of time.”

In order to investigate what might be driving aggressive meningioma, Raleigh’s group examined 280 human meningioma samples collected by Michael McDermott, MD, and other faculty members in the Department of Neurological Surgery at UCSF between 1990 and 2015. Using an array of techniques, including RNA sequencing and targeted gene expression profiling, the researchers searched for links between gene activity and protein production in these tumors and the clinical outcomes of patients.

Raleigh’s team found that a gene named FOXM1 was at the heart of aggressive meningioma growth, and a signpost of subsequently poor clinical outcomes, including death. Previous studies have implicated FOXM1, which encodes a transcription factor protein capable of regulating the activity of many other genes, in many other human cancers, including liver, breast, lung, prostate, colon, and pancreatic cancers.

In the new study, the researchers found that heightened FOXM1 activity was the unifying factor between aggressive meningiomas in both men and women, in older and younger patients, and in meningiomas arising in different parts of the brain. Not only did the gene’s activation seem to underlie newly diagnosed tumors, but it was also an important driver of tumor recurrence following treatment.

The researchers also identified new links between aggressive meningioma proliferation and activation of an intercellular signaling pathway called Wnt — which typically plays a role during embryonic development and tissue formation. Given that the protein produced by FOXM1 is known to transmit signals along the Wnt pathway, the new data suggests that FOXM1 and the Wnt pathway working in concert may drive subsequent meningioma proliferation.

Raleigh’s group also looked at DNA methylation — chemical modifications of the genomic material that affects whether or not specific genes are expressed in a given cell. Previous research has identified excessive methylation of DNA, or “hypermethylation,” as a ubiquitous aspect of cancer development. The new study found significant hypermethylation in the most aggressive meningiomas, and showed that these DNA modifications specifically silenced genes that usually inhibit FOXM1 expression and Wnt signaling. Together, these findings suggest that hypermethylation may be an early trigger that leads to the development of aggressive forms of meningioma.

brain cancer scan
Meningioma on head CT scan NeuroscienceNews.com image is credited to UCSF.

But according to Raleigh, future treatments will need to have more refined in their actions than simply blocking FOXM1. Though blocking FOXM1 could halt aggressive meningioma growth, the gene’s role in regulating a host of other genes suggests that there would likely be significant “off-target” side effects. “We now need to find out what other genes FOXM1 is activating to drive meningioma growth, and block those targets with clinical therapies,” Raleigh said.

These new insights may prove particularly beneficial for older patients that have aggressive meningiomas, because elderly patients have more trouble tolerating the cranial surgeries or recurrent radiation therapies that are currently used to control aggressive tumors.

“Aggressive meningiomas are very insidious tumors. They keep coming back year after year. Sometimes, patients get worn down from the treatments, or become so old they can’t tolerate them anymore,” Raleigh said. “Often, we run out of time, but with our new molecular insights into meningioma biology we may be able to find new cures for these tumors with fewer side effects and better outcomes.”

About this neuroscience research article

Harish N. Vasudevan, MD, PhD, was lead author of the study. Other authors of the paper were Steve E. Braunstein, MD, PhD, Joanna J. Phillips, MD, PhD, Melike Pekmezci, MD, Ashley Wu, Gerald F. Reis, MD, Stephen T. Magill, MD, PhD, Jie Zhang, Felix Y. Feng, MD, Theodore Nicholaides, Susan M. Chang, MD, Penny K. Sneed, MD, Michael W. McDermott, MD, Mitchel S. Berger, MD, and Arie Perry, MD, all of UCSF; and Bryan A, Tomlin, PhD, of California State University Channel Islands.

Funding: This work was supported by the US National Institutes of Health (NIH) (1F32CA213944-01), the Linda Wolfe Meningioma Research Fund, the Goddard Foundation, and the University of California San Francisco Physician Scientist Scholar Program.

Source: Stephen Fontenot – UCSF
Publisher: Organized by NeuroscienceNews.com.
Image Source: NeuroscienceNews.com image is credited to UCSF.
Original Research: Abstract for “Comprehensive Molecular Profiling Identifies FOXM1 as a Key Transcription Factor for Meningioma Proliferation” by Harish N. Vasudevan, Steve E. Braunstein, Joanna J. Phillips, Melike Pekmezci, Bryan A. Tomlin, Ashley Wu, Gerald F. Reis, Stephen T. Magill, Jie Zhang, Felix Y. Feng, Theodore Nicholaides, Susan M. Chang, Penny K. Sneed, Michael W. McDermott, Mitchel S. Berger, Arie Perry, and David R. Raleigh6 in Cell Reports. Published online March 27 2018.
doi:10.1016/j.celrep.2018.03.013

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]UCSF “Aggressive Growth of Common Brain Tumor Linked to Single Gene.” NeuroscienceNews. NeuroscienceNews, 28 March 2018.
<https://neurosciencenews.com/foxm11-brain-tumor-8706/>.[/cbtab][cbtab title=”APA”]UCSF (2018, March 28). Aggressive Growth of Common Brain Tumor Linked to Single Gene. NeuroscienceNews. Retrieved March 28, 2018 from https://neurosciencenews.com/foxm11-brain-tumor-8706/[/cbtab][cbtab title=”Chicago”]UCSF “Aggressive Growth of Common Brain Tumor Linked to Single Gene.” https://neurosciencenews.com/foxm11-brain-tumor-8706/ (accessed March 28, 2018).[/cbtab][/cbtabs]


Abstract

Comprehensive Molecular Profiling Identifies FOXM1 as a Key Transcription Factor for Meningioma Proliferation

Highlights
•Genomic, epigenomic, and transcriptomic factors identify meningioma molecular subgroups
•FOXM1 expression delineates aggressive meningiomas across molecular subgroups
•FOXM1/Wnt signaling is associated with mitotic gene expression in aggressive meningioma
•FOXM1 signaling drives primary meningioma cell proliferation

Summary
Meningioma is the most common primary intracranial tumor, but the molecular drivers of aggressive meningioma are incompletely understood. Using 280 human meningioma samples and RNA sequencing, immunohistochemistry, whole-exome sequencing, DNA methylation arrays, and targeted gene expression profiling, we comprehensively define the molecular profile of aggressive meningioma. Transcriptomic analyses identify FOXM1 as a key transcription factor for meningioma proliferation and a marker of poor clinical outcomes. Consistently, we discover genomic and epigenomic factors associated with FOXM1 activation in aggressive meningiomas. Finally, we define a FOXM1/Wnt signaling axis in meningioma that is associated with a mitotic gene expression program, poor clinical outcomes, and proliferation of primary meningioma cells. In summary, we find that multiple molecular mechanisms converge on a FOXM1/Wnt signaling axis in aggressive meningioma.

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.