How the brain decides to punish or not

Summary: The bilateral claustrum, right inferior frontal gyrus, and left superior frontal gyrus remain active during activities involving social punishment.

Source: National Research University Higher School of Economics

Research Fellow at the Institute of Cognitive Neuroscience, HSE University, has conducted meta-analysis of 17 articles to find out which areas of the brain are involved decision-making for rendering social punishment. It would appear that in case of both victims of violations as well as witnesses, punishment decisions activate the brain regions responsible for focusing one’s attention, processing information, and responding effectively to social interaction. The findings of the study were published in Scientific Reports.

Social punishment is necessary in order to maintain order and cooperation in society. In their everyday lives, people who have committed wrongdoings may face reprimand or rejection. A decision to invoke punishment may be implemented by a person who was affected because of such a violation of norms (‘second-party punishment’), or by a neutral person, who nevertheless knows about the norm violation (‘third-party punishment’). It used to be a known fact that certain brain areas activate in victims of violations as well as in witnesses in response to different forms of social punishment. However, it was not entirely clear to date which areas were activated in particular.

A typical game for the study of social punishment is the Ultimatum where one test subject makes a decision about how much of the amount given to him or her will be given to another subject. The participant is free to divide it up as he or she likes, even keeping the entire amount. If the second participant finds the decision unfair, they can punish the offender (for example, reject the proposed division), i.e. execute ‘second party punishment’. Alternatively, the punishment can be invoked by the third test subject, the witness of the transaction, which will constitute third-party punishment.

Oksana Zinchenko employed activation likelihood estimation (ALE) to analyze data on the brain activity of 383 participants of 17 studies devoted to the subject of social punishment. The participants were either playing the Ultimatum game or were engaged in other types of strategic games simulating norm-violating events that would result in a social punishment. While the participants were performing these tasks, the researchers applied functional Magnetic Resonance Imaging (fMRI) to record their brain activity.

The analysis revealed that such areas of the brain as the bilateral claustrum (upon activation, spreading to the insular cortex), the left superior frontal and right interior frontal gyri were always activated for social punishment tasks. These areas related to either the salience network or central-executive network of the brain. These neuron systems are responsible for focusing attention, detecting errors, and processing contextual information – all essential components for punishment decision-making. The right interior frontal gyrus is regarded as a key region in the brain’s ’emotional empathy network’, required for adequate responses to various social interactions. As for the left superior frontal gyrus, its main function is believed to store information in the working memory during decision-making processes.

This shows brain scans
Brain map of significant ALE values for social punishment. The image is credited to Oksana Zinchenko.

However, the meta-analysis revealed no concordant activation in other brain regions, including those corresponding with the mentalizing network, which operate in a different way with respect to second-party and third-party punishments. This network is responsible for evaluating a wrongdoer’s intentions. Some regions of this network may be triggered differently, depending on the type of punishment under consideration.

The researchers have yet to perform a more in-depth analysis of the differences in the brain’s responses to various types of social punishment. Meanwhile, we can better understand what mechanisms underlie social control and people’s ability to cooperate by studying the similarities in information processing related to social punishment.

About this neuroscience research article

Source:
National Research University Higher School of Economicsr
Media Contacts:
Liudmila Mezentseva – National Research University Higher School of Economics
Image Source:
The image is credited to Oksana Zinchenko.

Original Research: Open access
“Brain responses to social punishment: a meta-analysis”. Oksana Zinchenko.
Scientific Reports doi:10.1038/s41598-019-49239-1.

Abstract

Brain responses to social punishment: a meta-analysis

Many studies suggest that social punishment is beneficial for cooperation and consequently maintaining the social norms in society. Neuroimaging and brain stimulation studies show that the brain regions which respond to violations of social norms, the understanding of the mind of others and the executive functions, are involved during social punishment. Despite the rising number of studies on social punishment, the concordant map of activations – the set of key regions responsible for the general brain response to social punishment – is still unknown. By using coordinate-based fMRI meta-analysis, the present study examined the concordant map of neural activations associated with various social punishment tasks. A total of 17 articles with 18 contrasts including 383 participants, equalling 191 foci were included in activation likelihood estimation (ALE) analysis. The majority of the studies (61%) employed the widely used neuroeconomic paradigms, such as fairness-related norm tasks (Ultimatum Game, third-party punishment game), while the remaining tasks reported criminal scenarios evaluation and social rejection tasks. The analysis revealed concordant activation in the bilateral claustrum, right interior frontal and left superior frontal gyri. This study provides an integrative view on brain responses to social punishment.

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.