ATP From Sensory Neuron-Interneuron Crosstalk Is Key to Spreading Inflammation in Rheumatoid Arthritis

Summary: In rheumatoid arthritis, inflammation in one joint is transmitted to other joints via the sensory neuron connections in the spinal cord, leading to inflammation in the other joints. Inflammation in one joint led to an increase in ATP in other joints, which triggered an increase of a signaling molecule that resulted in inflammation. Blocking the pathway reduced the spread of inflammation.

Source: Hokkaido University

Rheumatoid arthritis is a chronic inflammatory autoimmune disorder that primarily affects joints. One of the key features of this disease is remote inflammation, where inflammation spreads from one joint to another.

Research has shown that neural circuits or cells migrated from the joints are involved in inflammation spread, but the detailed mechanism by which this occurs has not been elucidated.

A team of researchers from Japan and the USA, led by Professor Masaaki Murakami at Hokkaido University, have revealed that remote inflammation spreads by neuron crosstalk, and that adenosine triphosphate (ATP) plays a key role in this process.

Their findings, published in the Journal of Experimental Medicine, may lead to new therapies and treatments for inflammatory diseases.

Inflammation is a part of the natural immune response that occurs in response to infection or irritation. It is a process by which the immune system, involving immune cells, blood vessels, and molecular mediators, attempts to clear out the pathogens and damaged cells and thereafter repair the damage.

However, excessive inflammation is a disorder in itself, and is seen in diseases such as hay fever, atherosclerosis, psoriasis, and rheumatoid arthritis, among others.

In this study, the authors used previous observations of the gateway reflex—an immune response mechanism whereby specific neural signals change the state of specific blood vessels to allow immune cells to enter tissue, leading to local inflammation—to hypothesize that neural crosstalk could be responsible for remote inflammation.

This shows a woman with arthritic hands
Rheumatoid arthritis is a chronic inflammatory autoimmune disorder that primarily affects joints. Image is in the public domain

They tested this hypothesis through experiments in rheumatoid arthritis models in mice. The mice were divided into control and test groups. In the test groups, the sensory neural circuits between the left and right ankle joints were interrupted. Arthritis of the left ankle was then induced in both sets of mice and the spread of arthritis to the right ankle was observed.

Their results showed that the inflammation signal in one joint is transmitted to the other via a sensory neuron connection through the spinal cord, leading to inflammation in both joints. Specifically, inflammation in one joint led to an increase of ATP in both joints, which triggered an increase of a signal molecule that resulted in inflammation. Blocking this pathway prevented the spread of inflammation.

As this study was performed in mice models, it is necessary to determine if the findings apply to rheumatoid arthritis and other chronic inflammatory diseases in humans. If so, it could provide a therapeutic target for various diseases with spreading inflammation.

About this inflammation and rheumatoid arthritis research news

Author: Press Office
Source: Hokkaido University
Contact: Press Office – Hokkaido University
Image: The image is in the public domain

Original Research: Closed access.
ATP spreads inflammation to other limbs through crosstalk between sensory neurons and interneurons” by Rie Hasebe et al. Journal of Experimental Medicine


Abstract

ATP spreads inflammation to other limbs through crosstalk between sensory neurons and interneurons

Neural circuits between lesions are one mechanism through which local inflammation spreads to remote positions.

Here, we show the inflammatory signal on one side of the joint is spread to the other side via sensory neuron–interneuron crosstalk, with ATP at the core.

Surgical ablation or pharmacological inhibition of this neural pathway prevented inflammation development on the other side.

Mechanistic analysis showed that ATP serves as both a neurotransmitter and an inflammation enhancer, thus acting as an intermediary between the local inflammation and neural pathway that induces inflammation on the other side.

These results suggest blockade of this neural pathway, which is named the remote inflammation gateway reflex, may have therapeutic value for inflammatory diseases, particularly those, such as rheumatoid arthritis, in which inflammation spreads to remote positions.

Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.