How Neural Networks Influence Alcoholism

Summary: Researchers report alcohol seeking behavior may be induced by altering the strength of synapses.

Source: Texas A&M.

About 15.1 million American adults have alcohol use disorder, meaning they cannot stop drinking despite adverse consequences–in other words, they have what is commonly referred to as alcoholism. Although it has been known that alterations in the connections between neurons in the brain likely play a role in alcohol dependence and other addictions, the cause-and-effect between these brain alterations and behavior has been less clear.

Now, Texas A&M research indicates that alcohol-seeking behavior may be induced by altering the strength of connections between particular neurons, according to recent results published in the journal Nature Neuroscience.

“We found that by applying a long-term potentiation protocol to animal models, we could directly induce a persistent change in their drinking behavior,” said Jun Wang, MD, PhD, assistant professor at the Texas A&M College of Medicine and lead author of the study.

Long-term potentiation is thought to be the basis of all learning and memory. It is the strengthening of synapses–the connections between neurons–based on sustained patterns of activity. In some cases, the strengthening may be facilitated by alcohol consumption–but Wang and his colleagues found a way around that.

Wang and his team mimicked the effect of alcohol with optogenetics, in which specially implanted proteins sensitive to light can be rapidly turned on and off within the brain. This process stimulates neuronal activity and essentially recreates the learning and memory that comes from actually performing an activity. Either way, it results in changes to the strength of synapses.

But what is more exciting, Wang and his team were able to reverse the alcohol-mediated synaptic strengthening by reversing the process. They did so with the opposite of long-term potentiation–what they call long-term depression–and decreased drinking behavior.

These changes affected particular neurons called D1, which Wang’s earlier research indicated could tell the brain to keep drinking. He calls them the ‘go’ neurons. Other neurons, called D2, do the opposite, and when they are activated, they give the signal to stop drinking.

man
These changes affected particular neurons called D1, which Wang’s earlier research indicated could tell the brain to keep drinking. NeuroscienceNews.com image is in the public domain.

“Our results provide pretty solid evidence that there is indeed a cause-and-effect relationship between the long-term synaptic changes and alcohol-seeking behavior,” Wang said. “Essentially, when brain changes are reversed, an individual may not want to drink for a long time.”

Although using this exact process in a human brain wouldn’t be feasible now, the results indicate possible targets for drugs or other therapies in the future. “Ultimately, our long-term goal is a cure for alcoholism, and possibly for other addictions as well,” Wang said. “We think these results that help us better understand how the brain works are an important step toward that goal.”

About this neuroscience research article

Funding: This research was supported in part by grants from the National Institute on Alcohol Abuse and Alcoholism (NIAAA) and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK).

Source: Holly Shive – Texas A&M
Publisher: Organized by NeuroscienceNews.com.
Image Source: NeuroscienceNews.com image is in the public domain.
Original Research: Abstract in Nature Neuroscience.
doi:10.1038/s41593-018-0081-9

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]Texas A&M “How Neural Networks Influence Alcoholism.” NeuroscienceNews. NeuroscienceNews, 13 February 2018.
<https://neurosciencenews.com/alcoholism-neural-networks-8483/>.[/cbtab][cbtab title=”APA”]Texas A&M (2018, February 13). How Neural Networks Influence Alcoholism. NeuroscienceNews. Retrieved February 13, 2018 from https://neurosciencenews.com/alcoholism-neural-networks-8483/[/cbtab][cbtab title=”Chicago”]Texas A&M “How Neural Networks Influence Alcoholism.” https://neurosciencenews.com/alcoholism-neural-networks-8483/ (accessed February 13, 2018).[/cbtab][/cbtabs]


Abstract

Bidirectional and long-lasting control of alcohol-seeking behavior by corticostriatal LTP and LTD

Addiction is proposed to arise from alterations in synaptic strength via mechanisms of long-term potentiation (LTP) and depression (LTD). However, the causality between these synaptic processes and addictive behaviors is difficult to demonstrate. Here we report that LTP and LTD induction altered operant alcohol self-administration, a motivated drug-seeking behavior. We first induced LTP by pairing presynaptic glutamatergic stimulation with optogenetic postsynaptic depolarization in the dorsomedial striatum, a brain region known to control goal-directed behavior. Blockade of this LTP by NMDA-receptor inhibition unmasked an endocannabinoid-dependent LTD. In vivo application of the LTP-inducing protocol caused a long-lasting increase in alcohol-seeking behavior, while the LTD protocol decreased this behavior. We further identified that optogenetic LTP and LTD induction at cortical inputs onto striatal dopamine D1 receptor-expressing neurons controlled these behavioral changes. Our results demonstrate a causal link between synaptic plasticity and alcohol-seeking behavior and suggest that modulation of this plasticity may inspire a therapeutic strategy for addiction.

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.