A password will be e-mailed to you.

Paraplegic Rats Walk and Regain Feeling After Stem Cell Treatment

Summary: In a groundbreaking study, researchers use engineered tissue derived from human stem cells to treat rats with paraplegia following spinal cord injury. The transplanted cells allowed the rats to regain sensory perception, improve mobility and helped with spinal cord healing.

Source: Frontiers.

Engineered tissue containing human stem cells has allowed paraplegic rats to walk independently and regain sensory perception. The implanted rats also show some degree of healing in their spinal cords. The research, published in Frontiers in Neuroscience, demonstrates the great potential of stem cells — undifferentiated cells that can develop into numerous different types of cells — to treat spinal cord injury.

Spinal cord injuries often lead to paraplegia. Achieving substantial recovery following a complete spinal cord tear, or transection, is an as-yet unmet challenge.

Led by Dr. Shulamit Levenberg, of the Technion-Israel Institute of Technology, the researchers implanted human stem cells into rats with a complete spinal cord transection. The stem cells, which were derived from the membrane lining of the mouth, were induced to differentiate into support cells that secrete factors for neural growth and survival.

The work involved more than simply inserting stem cells at various intervals along the spinal cord. The research team also built a three-dimensional scaffold that provided an environment in which the stem cells could attach, grow and differentiate into support cells. This engineered tissue was also seeded with human thrombin and fibrinogen, which served to stabilize and support neurons in the rat’s spinal cord.

Rats treated with the engineered tissue containing stem cells showed higher motor and sensory recovery compared to control rats. Three weeks after introduction of the stem cells, 42% of the implanted paraplegic rats showed a markedly improved ability to support weight on their hind limbs and walk. 75% of the treated rats also responded to gross stimuli to the hind limbs and tail.

a rat

Representative images of rat posture 43-days following implantation of an induced-construct (bottom) vs. transection only (top). NeuroscienceNews.com image is credited to Levenberg et al./Frontiers in Neuroscience.

In contrast, control paraplegic rats that did not receive stem cells showed no improved mobility or sensory responses.

In addition, the lesions in the spinal cords of the treated rats subsided to some extent. This indicates that their spinal cords were healing.

While the results are promising, the technique did not work for all implanted rats. An important area for further research will be to determine why stem cell implantation worked in some cases but not others. As the research team notes, “This warrants further investigation to shed light on the mechanisms underlying the observed recovery, to enable improved efficacy and to define the intervention optimal for treatment of spinal cord injury.”

Although the study in itself does not solve the challenge of providing medical treatments for spinal cord injury in humans, it nevertheless points the way to that solution. As Dr. Levenberg puts it: “Although there is still some way to go before it can be applied in humans, this research gives hope.”

About this neuroscience research article

Funding: J&J Shervington Fund, Israel Foundation for Spinal Cord Injury, The Israel Science Foundation funded this study.

Source: Emma Duncan – Frontiers
Publisher: Organized by NeuroscienceNews.com.
Image Source: NeuroscienceNews.com image is credited to LEvenberg et al./Frontiers in Neuroscience.
Original Research: Full open access research for “Implantation of 3D Constructs Embedded with Oral Mucosa-Derived Cells Induces Functional Recovery in Rats with Complete Spinal Cord Transection” by Javier Ganz, Erez Shor, Shaowei Guo, Anton Sheinin, Ina Arie, Izhak Michaelevski, Sandu Pitaru, Daniel Offen and Shulamit Levenberg in Frontiers in Neuroscience. Published online October 31 2017 doi:10.3389/fnins.2017.00589

Cite This NeuroscienceNews.com Article
Frontiers “Paraplegic Rats Walk and Regain Feeling After Stem Cell Treatment.” NeuroscienceNews. NeuroscienceNews, 16 November 2017.
<http://neurosciencenews.com/stem-cell-paraplegia-7963/>.
Frontiers (2017, November 16). Paraplegic Rats Walk and Regain Feeling After Stem Cell Treatment. NeuroscienceNews. Retrieved November 16, 2017 from http://neurosciencenews.com/stem-cell-paraplegia-7963/
Frontiers “Paraplegic Rats Walk and Regain Feeling After Stem Cell Treatment.” http://neurosciencenews.com/stem-cell-paraplegia-7963/ (accessed November 16, 2017).

Abstract

Implantation of 3D Constructs Embedded with Oral Mucosa-Derived Cells Induces Functional Recovery in Rats with Complete Spinal Cord Transection

Spinal cord injury (SCI), involving damaged axons and glial scar tissue, often culminates in irreversible impairments. Achieving substantial recovery following complete spinal cord transection remains an unmet challenge. Here, we report of implantation of an engineered 3D construct embedded with human oral mucosa stem cells (hOMSC) induced to secrete neuroprotective, immunomodulatory, and axonal elongation-associated factors, in a complete spinal cord transection rat model. Rats implanted with induced tissue engineering constructs regained fine motor control, coordination and walking pattern in sharp contrast to the untreated group that remained paralyzed (42 vs. 0%). Immunofluorescence, CLARITY, MRI, and electrophysiological assessments demonstrated a reconnection bridging the injured area, as well as presence of increased number of myelinated axons, neural precursors, and reduced glial scar tissue in recovered animals treated with the induced cell-embedded constructs. Finally, this construct is made of bio-compatible, clinically approved materials and utilizes a safe and easily extractable cell population. The results warrant further research with regards to the effectiveness of this treatment in addressing spinal cord injury.

“Implantation of 3D Constructs Embedded with Oral Mucosa-Derived Cells Induces Functional Recovery in Rats with Complete Spinal Cord Transection” by Javier Ganz, Erez Shor, Shaowei Guo, Anton Sheinin, Ina Arie, Izhak Michaelevski, Sandu Pitaru, Daniel Offen and Shulamit Levenberg in Frontiers in Neuroscience. Published online October 31 2017 doi:10.3389/fnins.2017.00589

Feel free to share this Neuroscience News.
Join our Newsletter
Sign up to receive the latest neuroscience headlines and summaries sent to your email daily from NeuroscienceNews.com
We hate spam. Your email address will not be sold or shared with anyone else.
No more articles