Researchers Identify Two Classes of Compounds Effective Against Zika

Summary: Compounds shown to be either effective at stopping the replication of Zika in its tracks or preventing the virus from killing brain cells.

Source: NIH/NCATS.

Researchers at the National Center for Advancing Translational Sciences (NCATS) recently identified compounds that potentially can be used to inhibit Zika virus replication and reduce its ability to kill brain cells. These compounds now can be studied by the broader research community to help combat the Zika public health crisis. NCATS is part of the National Institutes of Health.

Using NCATS’ drug repurposing screening robots, researchers identified two classes of compounds effective against Zika: one is antiviral, and the other prevents Zika-related brain cell death. The compounds include emricasan, an investigational drug currently being evaluated in a clinical trial to reduce liver injury and fibrosis, and niclosamide, a U. S. Food and Drug Administration-approved drug for use in humans to treat worm infections. In addition, the researchers identified nine cyclin-dependent kinase (CDK) inhibitors. CDK usually is involved in regulation of cellular processes as well as normal brain development, but the Zika virus can negatively affect this process.

NCATS’ work was a collaborative effort with Johns Hopkins University, Baltimore, (JHU) and Florida State University, Tallahassee, (FSU), and the study results were published in the August 29 issue of Nature Medicine. The NCATS screening effort builds on the initial research by JHU and FSU scientists, who discovered that the Zika virus infects brain cells early in development. Infection by the Zika virus may be related to fetal microcephaly, an abnormally small head resulting from an underdeveloped and/or damaged brain.

The Zika virus has been reported in 60 countries and territories worldwide; currently, there are no vaccines or effective drug treatments. The virus is spread primarily through bites from infected Aedes aegypti mosquitoes, and in addition, can be transmitted from mother to child and through sexual contact. It also is associated with neurological diseases such as Guillain-Barrée syndrome in infected adults.

“The Zika virus poses a global health threat,” said Anton Simeonov, Ph.D., NCATS scientific director. “While we await the development of effective vaccines, which can take a significant amount of time, our identification of repurposed small molecule compounds may accelerate the translational process of finding a potential therapy.”

NCATS researcher Wei Zheng, Ph.D., and his team led the drug repurposing screen to test three strains of Zika: Asian, African and Puerto Rican. The scientists first developed an assay (test) using caspase 3, a protein that causes brain cell death when infected by the virus. The next step was screening 6,000 FDA-approved and investigational compounds, which resulted in the identification of more than 100 promising compounds. The team then evaluated the protective effect of these compounds in brain cells after Zika virus infection. Three lead compounds, emiracsan, niclosamide and a CDK inhibitor known as PHA-690509, were identified as reducing neuronal cell death caused by Zika virus infection.

These compounds were effective either in inhibiting the replication of Zika or in preventing the virus from killing brain cells. For example, emricasan prevents cell death, and niclosamide and the nine CDK inhibitors stop the virus’ replication. The team also found that emricasan, when combined with one of the CDK inhibitors, prevented both cell death and virus replication. In addition, the team noted that the CDK inhibitors may be useful in treating non-pregnant patients who face an increased risk of Guillain-Barrée syndrome and other conditions sparked by Zika infection.

Image shows a researcher.
An NCATS researcher dispenses Zika virus (pink liquid) into trays for compound screening. Neurosciencenews image is credited to NCATS.

The researchers cautioned, however, that the use of emricasan and niclosamide during pregnancy for Zika infection will need to be evaluated in pre-clinical toxicology studies and clinical trials.

“Using the NCATS drug repurposing platform for emerging infectious diseases can help rapidly identify potential treatments for urgent needs such as the Zika virus,” Zheng said. “While identifying promising compounds is a first step, our goal at NCATS is to facilitate the translation of these findings for evaluation in the clinic. The release of all the compound screening data in this publication and in the public PubChem database opens the door to the research community to do just that.”

NCATS’ screening effort enabled the broader research team to quickly translate their earlier discoveries toward work to develop treatments for Zika virus infection. JHU is working on a mouse model to study the neuroprotective effects of the compounds identified from the screen and studying the mechanism of action of the lead compounds. FSU is testing the efficacy of these compounds in a Zika virus mouse model and is also studying the mechanism of action of the lead compounds.

About this Zika virus research article

Funding: In addition to NCATS, FSU and JHU, the research was supported by Emory University, Atlanta; the Maryland Stem Cell Research Fund, Columbia; NIH’s National Institute of Neurological Disorders and Stroke through grants NS048271 and NS095348, NS047344 and NS097206; and NIH’s National Institute of Allergy and Infectious Diseases through grant AI119530.

Source: Geoff Spencer – NIH/NCATS
Image Source: This NeuroscienceNews.com image is credited to NCATS.
Original Research: Full open access research for “Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen” by Miao Xu, Emily M Lee, Zhexing Wen, Yichen Cheng, Wei-Kai Huang, Xuyu Qian, Julia TCW, Jennifer Kouznetsova, Sarah C Ogden, Christy Hammack, Fadi Jacob, Ha Nam Nguyen, Misha Itkin, Catherine Hanna, Paul Shinn, Chase Allen, Samuel G Michael, Anton Simeonov, Wenwei Huang, Kimberly M Christian, Alison Goate, Kristen J Brennand, Ruili Huang, Menghang Xia, Guo-li Ming, Wei Zheng, Hongjun Song and Hengli Tang in Nature Medicine. Published online August 29 2016 doi:10.1038/nm.4184

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]NIH/NCATS. “Researchers Identify Two Classes of Compounds Effective Against Zika.” NeuroscienceNews. NeuroscienceNews, 30 August 2016.
<https://neurosciencenews.com/zika-drug-compound-4930/>.[/cbtab][cbtab title=”APA”]NIH/NCATS. (2016, August 30). Researchers Identify Two Classes of Compounds Effective Against Zika. NeuroscienceNews. Retrieved August 30, 2016 from https://neurosciencenews.com/zika-drug-compound-4930/[/cbtab][cbtab title=”Chicago”]NIH/NCATS. “Researchers Identify Two Classes of Compounds Effective Against Zika.” https://neurosciencenews.com/zika-drug-compound-4930/ (accessed August 30, 2016).[/cbtab][/cbtabs]


Abstract

Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen

In response to the current global health emergency posed by the Zika virus (ZIKV) outbreak and its link to microcephaly and other neurological conditions, we performed a drug repurposing screen of ~6,000 compounds that included approved drugs, clinical trial drug candidates and pharmacologically active compounds; we identified compounds that either inhibit ZIKV infection or suppress infection-induced caspase-3 activity in different neural cells. A pan-caspase inhibitor, emricasan, inhibited ZIKV-induced increases in caspase-3 activity and protected human cortical neural progenitors in both monolayer and three-dimensional organoid cultures. Ten structurally unrelated inhibitors of cyclin-dependent kinases inhibited ZIKV replication. Niclosamide, a category B anthelmintic drug approved by the US Food and Drug Administration, also inhibited ZIKV replication. Finally, combination treatments using one compound from each category (neuroprotective and antiviral) further increased protection of human neural progenitors and astrocytes from ZIKV-induced cell death. Our results demonstrate the efficacy of this screening strategy and identify lead compounds for anti-ZIKV drug development.

“Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen” by Miao Xu, Emily M Lee, Zhexing Wen, Yichen Cheng, Wei-Kai Huang, Xuyu Qian, Julia TCW, Jennifer Kouznetsova, Sarah C Ogden, Christy Hammack, Fadi Jacob, Ha Nam Nguyen, Misha Itkin, Catherine Hanna, Paul Shinn, Chase Allen, Samuel G Michael, Anton Simeonov, Wenwei Huang, Kimberly M Christian, Alison Goate, Kristen J Brennand, Ruili Huang, Menghang Xia, Guo-li Ming, Wei Zheng, Hongjun Song and Hengli Tang in Nature Medicine. Published online August 29 2016 doi:10.1038/nm.4184

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.