Ultrasound in the Treatment of Brain Diseases

Summary: The TPS neural stimulation technique is able to non-invasively target and activate deep brain regions, providing a new treatment potential for a range of neurological and psychological disorders.

Source: University of Vienna

Ultrasound is not only used as an imaging technique but targeted pulses of ultrasound can be used as a highly accurate treatment for a range of brain diseases, for which there were previously only limited treatment options.

Over the last few years, several revolutionary techniques of this kind have been developed, primarily in Toronto but also at MedUni Vienna.

The Viennese technique improves brain functions by externally activating neurons that are still functional. Improvements can be expected in various neuropsychiatric brain diseases such as Alzheimer’s, Parkinson’s, stroke, Multiple Sclerosis, and neuralgia.

A review jointly written by MedUni Vienna and the University of Toronto and published in the specialist journal “Advanced Science” shows that the new treatments are already on the brink of broad clinical application.

Over the last few years, new concepts for ultrasound brain therapy have been developed. Highly focused ultrasonic waves can now be used for non-invasive surgery, focal delivery of therapeutics or genes to selected areas of the brain and therapeutic modulation of neural networks in various brain diseases.

According to Roland Beisteiner, who oversaw the development of the new method of transcranial pulsed stimulation with ultrasound (TPS) at the Department of Neurology of MedUni Vienna and Vienna General Hospital, the new ultrasound techniques are not just a “take-it-or-leave-it” choice but a genuine advantage for clinical practice.

“The techniques developed in Vienna and Toronto represent innovative additional options we can use to supplement the existing established treatments. The patient data that has now been published show that the transcranial ultrasound innovations are safe and ready for broad clinical application.” The huge extra advantage of the Viennese technique is that it is virtually free from any side-effects.

Viennese TPS: broad clinical roll-out in sight

The TPS neural stimulation technique developed by an international consortium led by Vienna was presented as the cover article in a top scientific journal at the beginning of 2020. Alzheimer’s patients in this pilot study displayed sustained improvements over a period of three months.

The broad clinical roll-out has already started but, according to Beisteiner, requires special expertise: “The new treatment is an ongoing scientific development and requires clinicians to have specific neurological and methodological expertise, as well as knowledge of brain function,” explains Beisteiner.

As well as diseases such as Alzheimer’s, Parkinson’s, stroke, Multiple Sclerosis, and neuralgia, which have previously also been investigated with older, less accurate brain stimulation techniques, there are probably completely new applications for TPS as well. TPS is the only technique that can also activate deep regions of the brain in a targeted and non-invasive way.

Therefore, all diseases where it is possible to restore disrupted brain functions by activating still-functional neurons, are candidates for the new Viennese therapy. TPS is already licensed for the treatment of Alzheimer’s (CE certification).

Ultrasound techniques from Toronto: different technique, different targets

The two other techniques developed at the University of Toronto under the clinical lead of study co-author Andres Lozano likewise use ultrasonic waves. Targeted, non-invasive ultrasound surgery is already licensed for essential tremor and tremor-dominant Parkinson’s disease.

This shows a brain
Highly focused ultrasonic waves can now be used for non-invasive surgery, focal delivery of therapeutics or genes to selected areas of the brain and therapeutic modulation of neural networks in various brain diseases. Image is in the public domain

For the first time, it is now possible to treat brain malfunctions by targeted deactivation of overactive neurons without the need to open the skull, making this a technique that could be relevant in the future for many neurological movement disorders.

The third innovative ultrasound technique, targeted drug, antibody or gene therapy, solves one of the main challenges in neurology, in that it facilitates non-invasive local opening of the blood-brain barrier. Although many highly effective therapeutics are essentially available, it is not always possible to deliver them to the necessary site in the brain.

“By overcoming this barrier, it is now possible to deliver therapeutics and genes to the affected brain areas for the first time. This can potentially be used to treat all brain diseases where local drug therapy is effective, such as tumours and motor system diseases, for example,” says Beisteiner.

Requests to participate in studies

The new ultrasound treatments are being offered in the context of studies and at various treatment centres. However, since these are highly complex techniques, they require extensive briefing of patients and proven neuroscientific expertise to carry out the treatment.

About this neurotech and neurology research news

Source: University of Vienna
Contact: Johannes Angerer – University of Vienna
Image: The image is in the public domain

Original Research: Open access.
Transcranial Ultrasound Innovations Ready for Broad Clinical Application” by Roland Beisteiner and Andres M. Lozano. Advanced Science


Transcranial Ultrasound Innovations Ready for Broad Clinical Application

Brain diseases are one of the most important problems in our rapidly ageing society. Currently, there are not many effective medications and surgical options are limited due to invasiveness and non‐invasive brain stimulation techniques cannot be well targeted and cannot access deep brain areas. A novel therapy is transcranial ultrasound which allows a variety of treatments without opening of the skull. Recent technological developments generated three revolutionary options including 1) targeted non‐invasive surgery, 2) highly targeted drug, antibody, or gene therapy via local opening of the blood–brain barrier, and 3) highly targeted brain stimulation to improve pathological brain functions. This progress report summarizes the current state of the art for clinical application and the results of recent patient investigations.

Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.
  1. I would love to get connected to the researchers and be a part of their study. I have been diagnosed with a rare autoimmune neuromuscular disorder (Onset 2008, Diagnosis 2013). Allergies and adverse reactions (30+) limit the possible treatments I am able to do and try. This sounds like an amazing opportunity and treatment option that I would love to try. Please share contact details. I am part of a patient group that I’m confident would be extremely interested, as well. This could make for a huge clinical trial. THANK YOU! This brings so many so much hope!!!

  2. Very interested in this research. Would like to know more details, if there is any doctor in the US working with this research relating to Parkinson’s.

    Can this technique of drug application crossing the blood/brain barrier work with stem cell application.

    Who to contact directly for information.

    Thank you.

    1. Hi .I had Syphilis doctors discovered to late and now i have brain damage in the optic nerve so i lossing my vision and and dizziness is strong lately i very short of breath they say i have brain damage in the optic berve and vasculity but didnt say why …i feeling very bad 5 times when to emergency and signals show good only bad is blood test and vep test brain mri…they dont know how treat this i hope get into a research ..thanks

  3. Exciting new development with already defined areas of applications and potentially expansive for more applications.

  4. My brother had a stroke back in November. He is learning to walk and he can talk. My sister and I thought acupuncture would be the answer to stimulate the part of the brain that controls swallowing. Good to know there are other alternatives worth looking into.

  5. After ultrasound my wife was more lucid and I didn’t know why now I know was the procedure she has alhsheimer….she went for a fall and hits her head

Comments are closed.