Reward improves visual perceptual learning, but only after people sleep

Summary: Reward does not improve visual perception learning unless it is followed by a good night’s sleep.

Source: Brown University

Past studies have found that rewarding participants during a visual perceptual task leads to performance gains. However, new research suggests that these performance gains occur only if participants follow up the task with sleep.

he new findings may have particular implications for students tempted to sacrifice sleep in favor of late-night study sessions, said study corresponding author Yuka Sasaki, a professor of cognitive, linguistic and psychological sciences at Brown University.

“College students work very hard, and they sometimes shorten their sleep,” Sasaki said. “But they need sleep in order to retain their learning.”

In the study, published this month in the Proceedings of the National Academy of Sciences, young adults were asked to identify a letter and the orientation of a set of lines on a busy background. Some participants were told to refrain from eating or drinking in the hours leading up to the task and were then given drops of water as a reward for correct responses. In contrast to groups that were not rewarded during training, rewarded participants exhibited significant performance gains — but only if they slept after the training session. This finding suggests that reward doesn’t improve visual perceptual learning until people sleep.

The researchers believe that reward (or anticipation of reward) reinforces neural circuits between reward and visual areas of the brain, and these circuits are then more likely to reactivate during sleep to facilitate task learning. Indeed, during post-training sleep in rewarded participants, electroencephalogram (EEG) recordings found increased activation in the prefrontal, reward-processing area of the brain and decreased activation in the untrained visual areas of the brain.

That pattern of activation can likely be explained by past studies, which suggest that the prefrontal, reward-processing area of the brain sends signals to inhibit some of the neurons in the visual processing area. As a result, irrelevant connections are trimmed and the most efficient connections are preserved, and task performance improves.

The study also examined when the patterns of activation occurred. Untrained visual areas of the brain exhibited reduced activation during both REM and non-REM sleep, but prefrontal, reward-processing areas became active only during REM sleep. REM sleep appears to be particularly important for task learning — likely because connections are reorganized and optimized during this sleep stage — and it may be linked to the activation of reward-processing areas of the brain. Consistent with this theory, the rewarded study participants exhibited longer periods of REM sleep compared to those who did not receive a reward during training.

This shows a woman sleeping
This finding suggests that reward doesn’t improve visual perceptual learning until people sleep. Image is in the public domain.

Sasaki added that physical-based rewards, like food and water, may have a stronger impact on neural circuits compared to rewards such as money.

“Water deprivation may be fundamental,” she said. “When you’re really thirsty and you get water as a reward, the impact of that reward may be more prevailing to the brain.”

Future research could examine whether other types of learning, such as motor and associative learning, also benefit from the interaction between reward and sleep.

Going forward, Sasaki hopes the study will encourage collaboration between sleep researchers and scientists studying reinforcement learning.

“Reinforcement learning is a hot topic in neuroscience, but it hasn’t interacted much with sleep research,” she said. “So this could lead to more interdisciplinary work.”

In addition to Sasaki, other Brown University authors on the study were Masako Tamaki, Aaron V. Berard, Tyler Barnes-Diana, Jesse Siegel and Takeo Watanabe.

Funding: The study was funded by the National Institutes of Health (R21EY028329, R01EY019466, R01EY027841 and T32EY018080) and the United States-Israel Binational Science Foundation (BSF2016058).

About this learning and sleep research article

Source:
Brown University
Media Contacts:
Kevin Stacey – Brown University
Image Source:
The image is in the public domain.

Original Research: Closed access
“Reward does not facilitate visual perceptual learning until sleep occurs”. Masako Tamaki, Aaron V. Berard, Tyler Barnes-Diana, Jesse Siegel, Takeo Watanabe, and Yuka Sasaki.
PNAS doi:10.1073/pnas.1913079117.

Abstract

Reward does not facilitate visual perceptual learning until sleep occurs

A growing body of evidence indicates that visual perceptual learning (VPL) is enhanced by reward provided during training. Another line of studies has shown that sleep following training also plays a role in facilitating VPL, an effect known as the offline performance gain of VPL. However, whether the effects of reward and sleep interact on VPL remains unclear. Here, we show that reward interacts with sleep to facilitate offline performance gains of VPL. First, we demonstrated a significantly larger offline performance gain over a 12-h interval including sleep in a reward group than that in a no-reward group. However, the offline performance gains over the 12-h interval without sleep were not significantly different with or without reward during training, indicating a crucial interaction between reward and sleep in VPL. Next, we tested whether neural activations during posttraining sleep were modulated after reward was provided during training. Reward provided during training enhanced rapid eye movement (REM) sleep time, increased oscillatory activities for reward processing in the prefrontal region during REM sleep, and inhibited neural activation in the untrained region in early visual areas in non-rapid eye movement (NREM) and REM sleep. The offline performance gains were significantly correlated with oscillatory activities of visual processing during NREM sleep and reward processing during REM sleep in the reward group but not in the no-reward group. These results suggest that reward provided during training becomes effective during sleep, with excited reward processing sending inhibitory signals to suppress noise in visual processing, resulting in larger offline performance gains over sleep.

Feel free to share this Visual Learning News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.