Summary: Researchers have identified a population of neurons in the auditory cortex that responds to singing, but not any other type of music.

Source: MIT

For the first time, MIT neuroscientists have identified a population of neurons in the human brain that lights up when we hear singing, but not other types of music.

These neurons, found in the auditory cortex, appear to respond to the specific combination of voice and music, but not to either regular speech or instrumental music. Exactly what they are doing is unknown and will require more work to uncover, the researchers say.

“The work provides evidence for relatively fine-grained segregation of function within the auditory cortex, in a way that aligns with an intuitive distinction within music,” says Sam Norman-Haignere, a former MIT postdoc who is now an assistant professor of neuroscience at the University of Rochester Medical Center.

The work builds on a 2015 study in which the same research team used functional magnetic resonance imaging (fMRI) to identify a population of neurons in the brain’s auditory cortex that responds specifically to music. In the new work, the researchers used recordings of electrical activity taken at the surface of the brain, which gave them much more precise information than fMRI.

“There’s one population of neurons that responds to singing, and then very nearby is another population of neurons that responds broadly to lots of music. At the scale of fMRI, they’re so close that you can’t disentangle them, but with intracranial recordings, we get additional resolution, and that’s what we believe allowed us to pick them apart,” says Norman-Haignere.

Norman-Haignere is the lead author of the study, which appears today in the journal Current Biology. Josh McDermott, an associate professor of brain and cognitive sciences, and Nancy Kanwisher, the Walter A. Rosenblith Professor of Cognitive Neuroscience, both members of MIT’s McGovern Institute for Brain Research and Center for Brains, Minds and Machines (CBMM), are the senior authors of the study.

Neural recordings

In their 2015 study, the researchers used fMRI to scan the brains of participants as they listened to a collection of 165 sounds, including different types of speech and music, as well as everyday sounds such as finger tapping or a dog barking. For that study, the researchers devised a novel method of analyzing the fMRI data, which allowed them to identify six neural populations with different response patterns, including the music-selective population and another population that responds selectively to speech.

In the new study, the researchers hoped to obtain higher-resolution data using a technique known as electrocorticography (ECoG), which allows electrical activity to be recorded by electrodes placed inside the skull. This offers a much more precise picture of electrical activity in the brain compared to fMRI, which measures blood flow in the brain as a proxy of neuron activity.

“With most of the methods in human cognitive neuroscience, you can’t see the neural representations,” Kanwisher says. “Most of the kind of data we can collect can tell us that here’s a piece of brain that does something, but that’s pretty limited. We want to know what’s represented in there.”

Electrocorticography cannot be typically be performed in humans because it is an invasive procedure, but it is often used to monitor patients with epilepsy who are about to undergo surgery to treat their seizures. Patients are monitored over several days so that doctors can determine where their seizures are originating before operating. During that time, if patients agree, they can participate in studies that involve measuring their brain activity while performing certain tasks. For this study, the MIT team was able to gather data from 15 participants over several years.

For those participants, the researchers played the same set of 165 sounds that they used in the earlier fMRI study. The location of each patient’s electrodes was determined by their surgeons, so some did not pick up any responses to auditory input, but many did. Using a novel statistical analysis that they developed, the researchers were able to infer the types of neural populations that produced the data that were recorded by each electrode.

“When we applied this method to this data set, this neural response pattern popped out that only responded to singing,” Norman-Haignere says. “This was a finding we really didn’t expect, so it very much justifies the whole point of the approach, which is to reveal potentially novel things you might not think to look for.”

That song-specific population of neurons had very weak responses to either speech or instrumental music, and therefore is distinct from the music- and speech-selective populations identified in their 2015 study.

Music in the brain

In the second part of their study, the researchers devised a mathematical method to combine the data from the intracranial recordings with the fMRI data from their 2015 study. Because fMRI can cover a much larger portion of the brain, this allowed them to determine more precisely the locations of the neural populations that respond to singing.

This shows a man singing with neurons as a backdrop
For the first time, MIT neuroscientists have identified a population of neurons in the human brain that light up when you hear singing, but not other types of music. Credit: MIT

“This way of combining ECoG and fMRI is a significant methodological advance,” McDermott says. “A lot of people have been doing ECoG over the past 10 or 15 years, but it’s always been limited by this issue of the sparsity of the recordings. Sam is really the first person who figured out how to combine the improved resolution of the electrode recordings with fMRI data to get better localization of the overall responses.”

The song-specific hotspot that they found is located at the top of the temporal lobe, near regions that are selective for language and music. That location suggests that the song-specific population may be responding to features such as the perceived pitch, or the interaction between words and perceived pitch, before sending information to other parts of the brain for further processing, the researchers say.

The researchers now hope to learn more about what aspects of singing drive the responses of these neurons. They are also working with MIT Professor Rebecca Saxe’s lab to study whether infants have music-selective areas, in hopes of learning more about when and how these brain regions develop.

Funding: The research was funded by the National Institutes of Health, the U.S. Army Research Office, the National Science Foundation, the NSF Science and Technology Center for Brains, Minds, and Machines, the Fondazione Neurone, and the Howard Hughes Medical Institute.

About this music and neuroscience research news

Author: Anne Trafton
Source: MIT
Contact: Anne Trafton – MIT
Image: The image is credited to MIT

Original Research: Open access.
A neural population selective for song in human auditory cortex” by Sam Norman-Haignere et a;. Current Biology


Abstract

A neural population selective for song in human auditory cortex

Highlights

  • Neural population responsive to singing, but not instrumental music or speech
  • New statistical method infers neural populations from human intracranial responses
  • fMRI used to map the spatial distribution of intracranial responses
  • Intracranial responses replicate distinct music- and speech-selective populations

Summary

How is music represented in the brain? While neuroimaging has revealed some spatial segregation between responses to music versus other sounds, little is known about the neural code for music itself. To address this question, we developed a method to infer canonical response components of human auditory cortex using intracranial responses to natural sounds, and further used the superior coverage of fMRI to map their spatial distribution.

The inferred components replicated many prior findings, including distinct neural selectivity for speech and music, but also revealed a novel component that responded nearly exclusively to music with singing. Song selectivity was not explainable by standard acoustic features, was located near speech- and music-selective responses, and was also evident in individual electrodes.

These results suggest that representations of music are fractionated into subpopulations selective for different types of music, one of which is specialized for the analysis of song.

Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.
  1. Please responses are distinct we tend to find that the general representation is auditories that’s what the information States that’s what the data collects these charge from that device that I have down is all is saved for that purpose read a conference neurologics of a neural networks

    I am handicapped name usury with disability and Would the device implement What exactly ? I can talk again from My TBI … And constraints

  2. Fascinating! Would be interesting to see what hormones are released based on the stimulation. Thinking of how a baby or animal calms down when you sing to them. In addition, a cat purring and the frequency of the sound and how it may stimulate an area like this. Just random thoughts.

  3. QUESTION: how does this finding relate to EARWORMS/BRAINWORMS? When songs present themselves in the minds/brains of the subject repeatedly, automatically, like an annoying jingle, but are songs actually liked by the subject and are unique to his repertoire. Are these songs recorded somewhere in the vicinity of these neurons? Are the connections abnormally firing repetitively, and for what reason?

Comments are closed.