Study reveals the ZNF117 gene is a major regulator of glioblastoma tumor cells.
Variations in the TSPO neuroinflammation-associated protein's structure correlates with worse survival outcomes for male glioblastoma brain cancer patients than females.
Researchers have identified specific proteins that drive the development of cancer stem cells. They report targeting and suppressing galectin1, in addition to radiation therapy, could be an effective treatment for glioblastoma brain cancer.
A new STING treatment induces immunological responses that allow the immune system to fight otherwise immunological resistant glioblastoma cancer cells, researchers report.
Engineering NK cells to resist immune suppression could be a path toward using NK cell-based immunotherapies for glioblastoma brain cancer.
Combining αGITR antibodies with ICBs resulted in stronger survival benefits in mouse models of human glioblastoma brain cancer.
Study shows how cholesterol becomes dysregulated in brain cancer cells and reports the gene responsible for the dysregulation could be a potential target to help treat glioblastoma brain cancer.
Study reveals how two key molecules, Rab27b, and epiregulin, interact to contribute to radioresistance in glioblastoma brain cancer.
An oncogene believed to be responsible for glioblastoma brain cancer has been identified. AVIL, a gene that normally helps cells to maintain their shape and size, can shift into overdrive, causing cancer cells to form and spread. Blocking the gene's activity completely destroyed glioblastoma cancer cells in mouse models, but did not have any effect on healthy cells. The findings provide potential new treatment avenues for the deadly brain cancer.
Trifluoperazine, a dopamine receptor antagonist commonly prescribed for schizophrenia, used in combination with radiation therapy delays the growth of glioblastoma brain tumors and prolongs survival for brain cancer.
Cannabidiol (CBD) appears to slow the growth of glioblastoma brain cancer cells in both animal and human cell lines. CBD's anti-cancer actions target mitochondria, causing them to dysfunction and release harmful reactive oxygen species. Cancer cells treated with CBD exhibited significant decreases in mitochondrial activity.
Combining niacin, or vitamin B3, with chemotherapy, helped slow the progression and increase life span in mouse models of glioblastoma.