Musical Processing: Consonant Results Resonate in the Brain

Most neuroscientific studies rely on a single experiment and assume their findings to be reliable. However, the validity of this assumption needs to be tested before accepting the findings as the ground truth. Indeed, the lack of replication studies in addition to the inconsistency of neuroimaging findings severely limits the advancement of knowledge in the field of neuroscience, all of which has recently become a hot topic within the neuroscientific community.

Concerned about this state of affairs, researchers at the Finnish Centre for Interdisciplinary Music Research (CIMR), University of Jyväskylä, in Finland, and from Aarhus University, in Denmark, aimed to replicate previous findings on how the brain processes music using a novel, naturalistic free listening context. Their results, published this month in Neuroimage, demonstrate that laboratory conditions resembling real-life contexts can yield reliable results, making findings more ecologically valid. “The more we can simulate reality in a lab in a reliable way, the more true to life the findings will be, and this is critical to modelling the way the brain actually understands the world”, sums up Doctoral Student Iballa Burunat, the lead author of the study.

The research team employed an identical methodology as in the original study, but using a new group of participants. As in the original study, participants had to just listen to the musical piece Adiós Nonino by A. Piazzolla. Researchers assessed how similar the observed brain activity was between the original and the new study. Replicating the experiment allowed the researchers to fine-tune the findings of the previous study, concluding what brain areas are involved in the processing of different musical elements, like tonality, timbre, and rhythm, and how accurately the neural correlates could be replicated for each of these musical elements. For instance, they observed that high level musical features, such as tonality and rhythm, were less replicable than low level (timbral) ones. “One reason for this may be that the neural processing of high?level musical features is more sensitive to state and traits of the listeners compared to the processing of low?level features, which may hinder the replication of previous findings”, says Academy Professor Petri Toiviainen, from the University of Jyväskylä, a co-author of the study.

Image shows brain scan and musical notes.
Listening to music in more realistic lab settings activates widespread brain areas involved in cognition, movement control, and emotion. The replication of previous findings validates naturalistic approaches in neuroscience to study how the brain works. Credit: University of Jyväskylä.

When listening to a piece of music, we can’t separate its auditory characteristics from its affective, cognitive, and contextual dimensions. It is precisely the integration of all these aspects that gives coherence to our listening experience. This is why taking a more naturalistic approach makes neuroscience more faithful to reality, a goal that a fully controlled setting that uses very simple and artificially created sounds falls short of. The success in replicating these findings should encourage scientists to move towards more real life paradigms that capture the complexity of the real world.

“The neuroscientific community needs to challenge the current scientific model driven by dysfunctional research practices tacitly encouraged by the “publish or perish” doctrine, which is precisely leading to the low reliability and the high discrepancy of results”, states Iballa Burunat. The authors stress that more incentives are needed for replicating experiments, and agree that scientific journals should more often than not welcome replication studies to ensure that published research is robust and reliable.

About this Neuroscience research

Funding: The study was supported by the Academy of Finland, TEKES, and the AivoAALTO project.

Source: Iballa Burunat – Academy of Finland
Image Credit: The image is credited to the NIH and is in the public domain
Original Research: Abstract for “The reliability of continuous brain responses during naturalistic listening to music” by Burunat, I., Toiviainen, P., Alluri, V., Bogert, B., Ristaniemi, T., Sams, M., and Brattico, E. in NeuroImage. Published online September 10 2015 doi:10.1016/j.neuroimage.2015.09.005


The reliability of continuous brain responses during naturalistic listening to music

Low-level (timbral) and high-level (tonal and rhythmical) musical features during continuous listening to music, studied by functional magnetic resonance imaging (fMRI), have been shown to elicit large-scale responses in cognitive, motor, and limbic brain networks. Using a similar methodological approach and a similar group of participants, we aimed to study the replicability of previous findings. Participants’ fMRI responses during continuous listening of a tango Nuevo piece were correlated voxelwise against the time series of a set of perceptually validated musical features computationally extracted from the music. The replicability of previous results and the present study was assessed by two approaches: (a) correlating the respective activation maps, and (b) computing the overlap of active voxels between datasets at variable levels of ranked significance. Activity elicited by timbral features was better replicable than activity elicited by tonal and rhythmical ones. These results indicate more reliable processing mechanisms for low-level musical features as compared to more high-level features. The processing of such high-level features is probably more sensitive to the state and traits of the listeners, as well as of their background in music.

“The reliability of continuous brain responses during naturalistic listening to music” by Burunat, I., Toiviainen, P., Alluri, V., Bogert, B., Ristaniemi, T., Sams, M., and Brattico, E. in NeuroImage. Published online September 10 2015 doi:10.1016/j.neuroimage.2015.09.005

Feel free to share this neuroscience news.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.