How single neurons and brain networks support spatial navigation

Summary: Brain oscillations may help explain the link between individual neurons and larger scale networks for understanding spatial navigation.

Source: RUB

Spatial navigation is an essential cognitive function, which is frequently impaired in patients suffering from neurological and psychiatric disorders. Research groups worldwide have studied the neuronal basis of spatial navigation, and the activity of both individual nerve cells and large cell assemblies in the brain appear to play a crucial role in the process. However, the relationship between the behaviour of individual cells and the behaviour of large cell networks has, for the most part, remained unexplored.

Various theories on this topic were put forward by an international team in the journal “Trends in Cognitive Sciences” from 24 May 2019. The review article was jointly authored by Dr. Lukas Kunz from the University Medical Center in Freiburg, Professor Liang Wang from the Chinese Academy of Sciences in Beijing, and Professor Nikolai Axmacher from Ruhr-Universität Bochum, together with colleagues from Columbia University in New York.

The brain’s GPS system

Numerous animal studies have shown that the brain contains specialised nerve cells that are essential for navigation. The activity of so-called place cells codes an individual’s specific location in space. “Together with other nerve cells, such as grid cells, they constitute a kind of GPS system in the brain,” explains Nikolai Axmacher, Head of the Neuropsychology Department in Bochum.

Studies with humans, on the other hand, have typically focused on the activity of large neural networks and identified large-scale brain areas that are relevant for spatial navigation.

Independently of each other, two research groups – one in New York and a network in Bochum, Freiburg and Beijing – have recently identified a potential link between the individual-cell scale and the network scale. In their article, the teams outlined their theory, based on the results of their respective experiments.

Potential link between the scales discovered

The groups analysed the rhythmical brain activity of cell assemblies in the so-called entorhinal cortex. This is where grid cells are located in the brain that were characterised in detail in animal studies and whose function in spatial navigation has been demonstrated on the individual-cell scale. The researchers found characteristics in the larger rhythmical brain waves that are similar to those that had previously been described for individual cells.

Neurons are shown here
Studies with humans, on the other hand, have typically focused on the activity of large neural networks and identified large-scale brain areas that are relevant for spatial navigation. The image is in the public domain.

But what is the relationship between brain oscillations and the activity of individual nerve cells? One theory assumes that neighbouring cells code similar locations; this spatial pattern might be reflected in the oscillations. Another model assumes that a higher number of different cells is activated during navigation in certain directions than in other directions, which in turn might result in increased oscillations.

“Consequently, EEG oscillations may constitute the link between individual cells and the larger-scale networks that are typically investigated in humans,” concludes Axmacher.

Alternative theory

The researchers are also outlining a completely different interpretation: “It is just as conceivable that the neural phenomena on the individual-cell scale and the network scale are not linked at all,” says Lukas Kunz, neuroscientist at the University Medical Center in Freiburg. “Both scales may underlie spatial behaviour, but they may not be directly related to each other.”

The researchers intend to verify these theories in the next step. “It is important to learn more details in order to integrate the research results gained in experiments with animals and with humans,” the authors explain. “It is equally important to know if the individual-cell scale and the network scale are affected by diseases jointly or independently of each other – and, consequently, if pharmacological treatment would affect them jointly or individually.”

About this neuroscience research article

Source:
RUB
Media Contacts:
Nikolai Axmacher – RUB
Image Source:
The image is in the public domain.

Original Research: Closed access
“Mesoscopic Neural Representations in Spatial Navigation”. Lukas Kunz, Shachar Maidenbaum, Dong Chen, Liang Wang, Joshua Jacobs, Nikolai Axmacher.
Trends in Cognitive Sciences. doi:10.1016/j.tics.2019.04.011

Abstract

Mesoscopic Neural Representations in Spatial Navigation

Neural representations of spatial navigation have mainly been studied at the microscopic level of single neurons or at the macroscopic level of fMRI.

Recent intracranial electroencephalography (iEEG) recordings in patients with epilepsy revealed neural representations of spatial features, including travelled distance, goal proximity to boundaries, and grid-like hexadirectional orientation. These representations occur at the mesoscopic level of brain oscillations, particularly in the theta frequency band.

Mesoscopic representations of space bridge the gap between their micro- and macroscopic counterparts. Experimentally testable scenarios may explain how the mesoscopic spatial representations relate to single-neuron firing, other neural oscillations, and fMRI signals.

Neural spatial representations may offer novel tools for biomarkers of neurological and psychiatric diseases.

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.