Wireless Nanorod Nanotube Film Enables Light Stimulation of Blind Retina

Breakthrough could lead to artificial retinas for visually impaired.

Scientists have developed a new light-sensitive film that could one day form the basis of a prosthetic retina to help people suffering from retinal damage or degeneration. Hebrew University of Jerusalem researchers collaborated with colleagues from Tel Aviv University and Newcastle University in the research, which was published in the journal Nano Letters.

The retina is a thin layer of tissue at the inner surface of the eye. Composed of light-sensitive nerve cells, it converts images to electrical impulses and sends them to the brain. Damage to the retina from macular degeneration, retinitis pigmentosa and other conditions can reduce vision or cause total blindness. In the United States alone, age-related macular degeneration (AMD) affects as many as 15 million Americans, with over 200,000 new cases diagnosed every year.

Scientists are currently designing a variety of medical devices to counter the effects of retinal disorders by sending visual signals to the brain. But these silicon-chip based solutions are typically hampered by their size, use of rigid parts, or requirement of external wiring such as to energy sources.

In the new study, Hebrew University researchers collaborated with colleagues from Tel Aviv University and Newcastle University to develop a novel approach for retina stimulation. Their device absorbs light and stimulates neurons without using wires or external power sources.

The Hebrew University researchers are Prof. Uri Banin, the Alfred & Erica Larisch Memorial Chair in Solar Energy, and his graduate student Nir Waiskopf, at the Institute of Chemistry and the Harvey M. Krueger Family Center for Nanoscience and Nanotechnology.

The researchers combined semiconductor nanorods and carbon nanotubes to create a wireless, light-sensitive, flexible implantable film. The film transforms visual cues to electric signals, mimicking the function of the photo-sensitive cells in the retina. Therefore, it could potentially form part of a future prosthetic device that will replace the damaged cells in the retina.

The image is a diagram which shows how the nanotubes and rods are used to stimulate the retina.
Carbon nanotube-semiconductor nanocrystals film for light stimulation of the retina. Absorption of light by semiconductor nanorods attached to carbon nanotube film (upper right) results in retina stimulation (upper left). Credit Bareket, Waiskopf et al./Nano Letters/American Chemical Society.

The researchers tested the new device on light-insensitive retinas from embryonic chicks and observed a neuronal response triggered by light.

According to the researchers, the new device is compact, capable of higher resolution than previous designs, and is also more effective at stimulating neurons. While much work remains until this can provide a practical solution, with additional research the researchers hope their carbon nanotube-semiconductor nanocrystals film will one day effectively replace damaged retinas in humans.

Prof. Uri Banin of the Hebrew University said: “This is a pioneering work demonstrating the use of highly tailored semiconductor nanocrystals in activation of biomedical functionalities. We hope this can lead to future implementation of this approach in retinal implants.”

About this vision research

The researchers received funding from the Israel Ministry of Science and Technology, the European Research Council and the Biotechnology and Biological Sciences Research Council.

Contact: Dov Smith – The Hebrew University of Jerusalem
Source: The Hebrew University of Jerusalem press release
Image Source: The image is credited to Bareket, Waiskopf et al./Nano Letters/American Chemical Society, and is adapted from the Hebrew University of Jerusalem press release
Original Research: Abstract for “Semiconductor Nanorod–Carbon Nanotube Biomimetic Films for Wire-Free Photostimulation of Blind Retinas” by Lilach Bareket, Nir Waiskopf, David Rand, Gur Lubin, Moshe David-Pur, Jacob Ben-Dov, Soumyendu Roy, Cyril Eleftheriou, Evelyne Sernagor, Ori Cheshnovsky, Uri Banin, and Yael Hanein in Nano Letters. Published online October 28 2014 doi:10.1021/nl5034304

Share this Neurotechnology News
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.