Neuron Unites Two Theoretical Models of Motion Detection

Summary: A new study reveals the role of T4 cells in the computation of motion.

Source: Max Planck Institute.

Computation of motion by T4 cells in the fly brain more complex than previously believed.

As indicated by their name, photoreceptor cells in the eye respond to light: is an image point bright or dark? They do not indicate the direction of a movement. This perception only arises in the brain through the comparative computations of light signals coming from adjacent image points. Engineers, physicists and neurobiologists have been debating the exact nature of these computations for around 50 years. Scientists from the Max Planck Institute of Neurobiology have now combined two theories about these computations, which were previously considered to be alternative hypotheses – and discovered that they are carried out in a single neuron.

Flies are usually very difficult to catch. No wonder – they invest around ten percent of their brain in the detection and processing of image motion. For the fly, a hand approaches in slow motion and the fly’s evasive manoeuvre has long been triggered before any real danger arises. Scientists have been researching for decades how the fly brain can perceive and process movements so quickly and accurately. “Our goal is slowly coming into view, and we are close to completely decoding the neuronal circuit of motion perception in the fly,” says Alexander Borst, who has been working on this problem with his Department at the Max Planck Institute of Neurobiology for quite some time. The scientists have now come one step closer to the answer: They have provided experimental data that combine two theories previously considered as alternatives.

Over 50 years ago, two rival theoretical models were developed which attempted to explain how information about the direction of motion could be computed from the signals transmitted by adjacent image points. One theory states that light stimuli along one direction, referred to as the preferred direction, enhance each other. In contrast, the other model assumes that light stimuli along the opposite direction, known as the null direction, suppress each other. In both cases, a weak direction-selective signal arises, which must then be further processed and amplified. “Interestingly, however, we discovered that already the first cells that respond to the motion stimuli – the T4 and T5 cells – display strong directional selectivity,” reports Alexander Borst.

In order to resolve this discrepancy, the neurobiologists refined a test set-up so that they were able to stimulate individual functional columns of the fly brain in succession and record the responses of the directionally-selective T4 cells. The data they collected and the corresponding computer simulations were clear: T4 cells intensify the input signals when they run along their preferred direction and suppress them when they run along the null direction. Both of the proposed mechanisms are thus implemented in the T4 cells of the fly brain, and what was thought to be an ‘either-or’ scenario became an ‘as-well-as’ one. “It’s no wonder that these cells can differentiate so accurately between motion directions,” says Jürgen Haag, first author of the study. “Nature’s solution is more complicated than either of the proposed models.”

Image shows the model.
The fly brain recognizes and processes movements very quickly and accurately. Researchers have now combined two theoretical models on how nerve cells compute motion direction from light signals which successively reach adjacent facets of the eye. NeuroscienceNews.com image is credited to MPI for Neurobiology.

In their computer simulations of such a combined mechanism, the Max Planck researchers required three different input signals to the T4 cells. Interestingly, however, T4 cells receive input signals from four other cells. This would suggest that the fourth – still unknown – input signal to the T4 cells contains a further surprise in relation to the final computation. “Needless to say, we would now also like to know what kind of information the T4 cells receive via this fourth channel,” says Alexander Borst, explaining the next step in the research process. “We will then be able to show for the first time how information about motion direction is calculated in a neural network from individual image points.”

About this neuroscience research article

Source: Alexander Borst – Max Planck Institute
Image Source: This NeuroscienceNews.com image is credited to MPI for Neurobiology.
Original Research: Abstract for “Complementary mechanisms create direction selectivity in the fly” by Juergen Haag, Alexander Arenz, Etienne Serbe, Fabrizio Gabbiani, and Alexander Borst in eLife. Published online August 10 2016 doi:10.7554/eLife.17421.001

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]Max Planck Institute. “Neuron Unites Two Theoretical Models of Motion Detection.” NeuroscienceNews. NeuroscienceNews, 10 August 2016.
<https://neurosciencenews.com/motion-detection-model-4817/>.[/cbtab][cbtab title=”APA”]Max Planck Institute. (2016, August 10). Neuron Unites Two Theoretical Models of Motion Detection. NeuroscienceNews. Retrieved August 10, 2016 from https://neurosciencenews.com/motion-detection-model-4817/[/cbtab][cbtab title=”Chicago”]Max Planck Institute. “Neuron Unites Two Theoretical Models of Motion Detection.” https://neurosciencenews.com/motion-detection-model-4817/ (accessed August 10, 2016).[/cbtab][/cbtabs]


Abstract

Complementary mechanisms create direction selectivity in the fly

How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred direction of the cell, and null direction suppression, where one signal inhibits the response to the subsequent one when stimuli move along the opposite, i.e. null direction. Along the processing chain in the Drosophila optic lobe, directional responses first appear in T4 and T5 cells. Visually stimulating sequences of individual columns in the optic lobe with a telescope while recording from single T4 neurons, we find both mechanisms at work implemented in different sub-regions of the receptive field. This finding explains the high degree of directional selectivity found already in the fly’s primary motion-sensing neurons and marks an important step in our understanding of elementary motion detection.

“Complementary mechanisms create direction selectivity in the fly” by Juergen Haag, Alexander Arenz, Etienne Serbe, Fabrizio Gabbiani, and Alexander Borst in eLife. Published online August 10 2016 doi:10.7554/eLife.17421.001

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.