Brain Patterns Predict How Fast Adults Learn New Languages

Some adults learn a second language better than others, and their secret may involve the rhythms of activity in their brains.

New findings by scientists at the University of Washington demonstrate that a five-minute measurement of resting-state brain activity predicted how quickly adults learned a second language.

The study, published in the June-July issue of the journal Brain and Language, is the first to use patterns of resting-state brain rhythms to predict subsequent language learning rate.

“We’ve found that a characteristic of a person’s brain at rest predicted 60 percent of the variability in their ability to learn a second language in adulthood,” said lead author Chantel Prat, a faculty researcher at the Institute for Learning & Brain Sciences and a UW associate professor of psychology.

At the beginning of the experiment, volunteers — 19 adults aged 18 to 31 years with no previous experience learning French — sat with their eyes closed for five minutes while wearing a commercially available EEG (electroencephalogram) headset. The headset measured naturally occurring patterns of brain activity.

The participants came to the lab twice a week for eight weeks for 30-minute French lessons delivered through an immersive, virtual reality computer program. The U.S. Office of Naval Research — who funded the current study — also funded the development of the language training program.

Image shows a woman standing infront of a blackboard with words for Hello written in different languages on it.
At the beginning of the experiment, volunteers — 19 adults aged 18 to 31 years with no previous experience learning French — sat with their eyes closed for five minutes while wearing a commercially available EEG (electroencephalogram) headset. The headset measured naturally occurring patterns of brain activity. Credit: Dmitrii Kotin.

The program, called Operational Language and Cultural Training System (OLCTS), aims to get military personnel functionally proficient in a foreign language with 20 hours of training. The self-paced program guides users through a series of scenes and stories. A voice-recognition component enables users to check their pronunciation.

To ensure participants were paying attention, the researchers used periodic quizzes that required a minimum score before proceeding to the next lesson. The quizzes also served as a measure for how quickly each participant moved through the curriculum.

At the end of the eight-week language program, participants completed a proficiency test covering however many lessons they had finished. The fastest person learned twice as quickly but just as well as the slower learners.

The recordings from the EEG headsets revealed that patterns of brain activity related to language processes were linked the most strongly to the participants’ rate of learning.

So, should people who don’t have this biological predisposition not even try to learn a new language? Prat says no, for two reasons.

“First, our results show that 60 percent of the variability in second language learning was related to this brain pattern — that leaves plenty of opportunity for important variables like motivation to influence learning,” Prat said.


A 2-minute demonstration of a virtual immersion language program, called OLCTS (Operational Language and Cultural Training System), used by UW and I-LABS researchers to provide study participants with 8 weeks of French training.

Second, Prat said it’s possible to change resting-state brain activity using neurofeedback training — something that she’s studying now in her lab. Neurofeedback is a sort of brain training regimen, through which individuals can strengthen the brain activity patterns linked to better cognitive abilities.

“We’re looking at properties of brain function that are related to being ready to learn well. Our goal is to use this research in combination with technologies such as neurofeedback training to help everyone perform at their best,” she said.

Ultimately, neurofeedback training could help people who want to learn a second language but lack the desirable brain patterns. They’d do brain training exercises first, and then do the language program.

“By studying individual differences in the brain, we’re figuring out key constraints on learning and information processing, in hopes of developing ways to improve language learning, and eventually, learning more generally,” Prat said.

About this neuroscience and language research

Co-authors of the study are Brianna Yamaski, Reina Kluender and Andrea Stocco — all at UW.

Source: Molly McElroy – University of Washington
Image Source: The image is credited to Dmitrii Kotin and is adapted from the University of Washington press release.
Video Source: The video is credited to I-LABS UW.
Original Research: Abstract for “Resting-state qEEG predicts rate of second language learning in adults” by Chantel S. Prat, Brianna L. Yamasaki, Reina A. Kluender, and Andrea Stocco in Brain and Language. Published online May 8 2016 doi:10.1016/j.bandl.2016.04.007


Abstract

Resting-state qEEG predicts rate of second language learning in adults

Understanding the neurobiological basis of individual differences in second language acquisition (SLA) is important for research on bilingualism, learning, and neural plasticity. The current study used quantitative electroencephalography (qEEG) to predict SLA in college-aged individuals. Baseline, eyes-closed resting-state qEEG was used to predict language learning rate during eight weeks of French exposure using an immersive, virtual scenario software. Individual qEEG indices predicted up to 60% of the variability in SLA, whereas behavioral indices of fluid intelligence, executive functioning, and working-memory capacity were not correlated with learning rate. Specifically, power in beta and low-gamma frequency ranges over right temporoparietal regions were strongly positively correlated with SLA. These results highlight the utility of resting-state EEG for studying the neurobiological basis of SLA in a relatively construct-free, paradigm-independent manner.

“Resting-state qEEG predicts rate of second language learning in adults” by Chantel S. Prat, Brianna L. Yamasaki, Reina A. Kluender, and Andrea Stocco in Brain and Language. Published online May 8 2016 doi:10.1016/j.bandl.2016.04.007

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.