Researchers Identify Neurons That Selectively Respond to Intermediate Colors

Researchers from Tohoku University’s Research Institute of Electrical Communication and RIKEN BSI have found the presence of neurons in the human brain which can each selectively respond to an intermediate color; not just neurons of red, green, yellow and blue.

It was previously believed that the human visual system encoded color information through combinations of four opponent colors – red/green, yellow/blue – and dark/light components. In this format, orange can be represented as the combination of red and yellow, and purple as a combination of blue and red.

However, recent electrophysiological studies in primates have revealed the presence of neurons in the visual cortex, each of which are selective to intermediate color.

Studies using human participants – through psychophysical and brain-activity-imaging techniques – have also shown indirect evidence of the presence of those neurons, although no direct recording of hue-selective response has yet been made, and the variability and population of neurons selective to intermediate colors have not been reported explicitly in humans.

The research group succeeded in recording neuronal responses selective to intermediate hues in human brains by using a functional MRI technique.

During the measurement of brain activity, subjects were shown a circular checkered pattern which gradually changed its color along a hue circle. The study was done under an equal light intensity carefully adjusted beforehand in each subject.

The time course of brain activity was analyzed for each pixel (voxel) of the fMRI data (Figure : left panel). For example, if the response of a voxel was dominated by neurons selective to a particular hue, it would exhibit a maximum response when the selective hue is presented.

Image shows a brain scan with the neuron areas highlighted in different colors.
Hue selectivity results: (left) example hue selective voxels, indicated by most selective color in each voxel. (right) Average histogram of hue selective voxels in primary visual cortex (V1: one of the four areas measured in this study) as polar histogram in relative population (%). Four dotted lines indicate unique hues (pure red, blue, green and yellow). Credit: Research Institute of Electrical Communication, Tohoku University.

The results were summarized, in terms of the voxel count selective to each hue direction, as histograms. An example of averaged histograms for the primary visual cortex (V1: one of four brain regions measured in the study) is shown in the figure. The study’s results also confirmed that the cortical responses selective to intermediate hues are not just the combined responses of the four opponent hues.

This is the first report in the world, of the histogram of neurons selective to each hue, including intermediate hues, in human subjects. Full findings of the study will appear in the British scientific journal Cerebral Cortex as an open-access article on September 30.

The researchers believe the result of the study may provide clues to the design of multi-primary-color displays. Usual displays have 3 color primaries (usually red, green, and blue), but color-rendering precision becomes higher when 6 color primaries are employed. Such displays have been studied for the presentation of high-quality/precision/fidelity color images that can be used, for example, for medical or clinical purpose.

Since the histogram (Figure: right panel) infers that people are possibly more sensitive to hues of larger population, it may be possible that displays with primary colors chosen among the larger population hues would be able to render more precise colors with a higher efficacy to the human brain.

About this psychology research

Funding: The study was funded by the Japan Society for the Promotion of Science.

Source: Ichiro Kuriki – Tohoku University
Image Credit: The image is credited to Research Institute of Electrical Communication, Tohoku University
Original Research: Full open access research for “Hue Selectivity in Human Visual Cortex Revealed by Functional Magnetic Resonance Imaging” by Ichiro Kuriki, Pei Sun, Kenichi Ueno, Keiji Tanaka, and Kang Cheng in Cerebral Cortex. Published online September 30 2015 doi:10.1093/cercor/bhv198


Abstract

Hue Selectivity in Human Visual Cortex Revealed by Functional Magnetic Resonance Imaging

The variability of color-selective neurons in human visual cortex is considered more diverse than cone-opponent mechanisms. We addressed this issue by deriving histograms of hue-selective voxels measured using fMRI with a novel stimulation paradigm, where the stimulus hue changed continuously. Despite the large between-subject difference in hue-selective histograms, individual voxels exhibited selectivity for intermediate hues, such as purple, cyan, and orange, in addition to those along cone-opponent axes. In order to rule the possibility out that the selectivity for intermediate hues emerged through spatial summation of activities of neurons selectively responding to cone-opponent signals, we further tested hue-selective adaptations in intermediate directions of cone-opponent axes, by measuring responses to 4 diagonal hues during concurrent adaptation to 1 of the 4 hues. The selective and unidirectional reduction in response to the adapted hue lends supports to our argument that cortical neurons respond selectively to intermediate hues.

“Hue Selectivity in Human Visual Cortex Revealed by Functional Magnetic Resonance Imaging” by Ichiro Kuriki, Pei Sun, Kenichi Ueno, Keiji Tanaka, and Kang Cheng in Cerebral Cortex. Published online September 30 2015 doi:10.1093/cercor/bhv198

Feel free to share this neuroscience news.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.