Brain Scans Shed Light on How We Solve Clues

Summary: Coupling machine learning with brain scans, researchers reveal how people understand objects in our world.

Source: Aalto University.

What’s an s-shaped animal with scales and no legs? What has big ears, a trunk and tusks? What goes ‘woof’ and chases cats? The brain’s ability to reconstruct facts – ‘a snake’, ‘an elephant’ and ‘a dog’ – from clues has been observed using brain scanning by researchers at Aalto university. Their study was published today in Nature Communications.

In the research, test subjects were given three clues to help them guess what familiar objects the clues described. In addition to well-known animals, the clues depicted vegetables, fruits, tools and vehicles. The familiar objects and concepts described in the clues were never presented directly to the test subjects.

The researchers at Aalto University demonstrated that brain activation patterns contained more information about the features of the concept than had been presented as clues. The researchers concluded that the brain uses environmental clues in an agile way to activate a whole range of the target concept’s properties that have been learned during life.

‘This is a very important skill in nature because it enables a quick response based on small amount of information. For example, we automatically avoid a wiggly thing on a rocky shore because we know that a snake may be poisonous,’ says Sasa Kivisaari, Postdoctoral Researcher at the Aalto University.

The study used a huge amount of internet-based material to map the meaningful features associated with different concepts. Machine learning was used to create a model that describes the relationship between these features and brain activation patterns. Based on the model, brain activation patterns could be used to accurately deduce which concept the test subject was thinking of. For example, the activation patterns could be used to infer whether the clues led the subject to think of an elephant or a dog.

Understanding our differences to detect memory disorders

The method can be used to address the question why people understand or perceive the same concept differently.

‘The organization of meanings in the brain differs from person to person and can also affect how easy or hard it is for them to understand each other,’ says Professor Riitta Salmelin.

The research may also play a role in detecting memory disorders.

brain scans
Four test subjects thinking about clues for the word “Moose.” image is credited to Sasa L. Kivisaari.

‘Combining and understanding meaningful information seems to involve the same brain areas that are damaged in early Alzheimer’s disease. Therefore, the method we use may also be applied to the early detection of memory disorders,’ says Kivisaari.

Professor Riitta Salmelin’s research team studies the neural basis of processing of language and meaningful information at the Department of Neuroscience and Biomedical Engineering at Aalto University. The research has been supported by the Academy of Finland, the Aalto Brain Centre and the Sigrid Jusélius Foundation.

About this neuroscience research article

Source: Dr. Sasa Kivisaari – Aalto University
Publisher: Organized by
Image Source: image is credited to Sasa L. Kivisaari.
Original Research: Open access research for “Reconstructing meaning from bits of information” by Sasa L. Kivisaari, Marijn van Vliet, Annika Hultén, Tiina Lindh-Knuutila, Ali Faisal & Riitta Salmelin in Nature Communications. Published February 13 2019.

Cite This Article

[cbtabs][cbtab title=”MLA”]Aalto University “Brain Scans Shed Light on How We Solve Clues.” NeuroscienceNews. NeuroscienceNews, 25 February 2019.
<>.[/cbtab][cbtab title=”APA”]Aalto University (2019, February 25). Brain Scans Shed Light on How We Solve Clues. NeuroscienceNews. Retrieved February 25, 2019 from[/cbtab][cbtab title=”Chicago”]Aalto University “Brain Scans Shed Light on How We Solve Clues.” (accessed February 25, 2019).[/cbtab][/cbtabs]


Reconstructing meaning from bits of information

Modern theories of semantics posit that the meaning of words can be decomposed into a unique combination of semantic features (e.g., “dog” would include “barks”). Here, we demonstrate using functional MRI (fMRI) that the brain combines bits of information into meaningful object representations. Participants receive clues of individual objects in form of three isolated semantic features, given as verbal descriptions. We use machine-learning-based neural decoding to learn a mapping between individual semantic features and BOLD activation patterns. The recorded brain patterns are best decoded using a combination of not only the three semantic features that were in fact presented as clues, but a far richer set of semantic features typically linked to the target object. We conclude that our experimental protocol allowed us to demonstrate that fragmented information is combined into a complete semantic representation of an object and to identify brain regions associated with object meaning.

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.