Autism Gene SYNGAP1’s Early Role in Brain Development

Summary: A new study uncovers unexpected early developmental impacts of SYNGAP1 gene variants linked to Autism Spectrum Disorder.

By examining brain organoids, including those from a patient with a SYNGAP1 variant, researchers found the SYNGAP1 protein in progenitor cells, challenging the belief that it’s only present in mature neuron synapses.

This discovery suggests that disrupted cortical development and disordered neural circuitry in patients may begin earlier than previously thought, potentially influencing future treatments for SYNGAP1-related disorders.

Key Facts:

  1. SYNGAP1 gene variants are linked to ASD, intellectual disability, developmental delay, and epilepsy.
  2. Brain organoids revealed the SYNGAP1 protein in radial glia cells, indicating its role in early cortical development.
  3. Disorganized cortical development due to SYNGAP1 variants could lead to altered neuronal activity and circuitry from early development stages.

Source: USC

The gene SYNGAP1, the variants of which are top risk factors for Autism Apectrum Disorder (ASD), has previously unappreciated effects on the developing brain, according to a new study published in Nature Neuroscience.

The study shows how disease-causing variants of SYNGAP1, thought primarily to affect synapses between mature neurons, could disrupt early development in a key region of the brain known as the cortex. 

This shows a child and neurons.
At least half of patients with a variant of the gene have been formally diagnosed with autistic features, and the majority of patients also experience intellectual disability, developmental delay, and epilepsy. Credit: Neuroscience News

“Our findings reframe our understanding of the developmental role not only of SYNGAP1, but also of an entire category of ASD risk genes previously thought to be primarily involved in the function of synapses, which are the interfaces that allow nerve cells to communicate with each other,” said corresponding author Giorgia Quadrato, an assistant professor of stem cell biology and regenerative medicine at the Keck School of Medicine of USC.

“Ultimately, this points to the importance of pursuing ASD therapies that target not only synapse function, but also early developmental defects.”

Disease-causing variants of SYNGAP1, a gene that provides instructions for making a protein that plays a critical role in the synapses, are associated with a variety of clinical manifestations.

At least half of patients with a variant of the gene have been formally diagnosed with autistic features, and the majority of patients also experience intellectual disability, developmental delay, and epilepsy. 

Until now, most research in animal models related to the SYNGAP1 protein has focused on the synapses.

To explore the functions of the SYNGAP1 protein during brain development, first authors Marcella Birtele and Ashley Del Dosso in the Quadrato lab and their colleagues analyzed organoids, which are brain structures grown from human stem cells in the lab. Some of these organoids were generated from the cells of a patient with a disease-causing variant in SYNGAP1.

“Organoids have created an opportunity to explore previously inaccessible aspects of human brain development,” said Quadrato.

By analyzing the organoids, the scientists found that the progenitor cells of the brain’s developing cortex, known as radial glia cells, contain the protein coded by the SYNGAP1 gene. Previously, it was thought that this SYNGAP1 protein was only found in the synapses of neurons within the cortex.

The scientists also pinpointed specific ways in which a decreased level of the SYNGAP1 protein, which can result from different disease-causing SYNGAP1 gene variants in patients, disrupts early cortical development.

Within the radial glia, a decreased level of the SYNGAP1 protein altered the cells’ cytoskeletons, which are networks of protein fibers that provide structure and support. 

The altered radial glia had a tendency to accelerate their differentiation into what are ultimately dysfunctional mature nerve cells, known as cortical projection neurons, which did not migrate properly to form well-organized neural circuits.

These results suggest that disease-causing SYNGAP1 variants can lead to the development of a disorganized cortex with disordered circuitry and altered neural activity in patients. The impaired neuronal excitability seen in SYNGAP1 patients could have its roots in these early developmental changes, in addition to synapse malfunction, as previously thought.

The findings could eventually lead to new ways to treat disorders caused by SYNGAP1 variants, according to Jonathan Santoro, an assistant professor of clinical neurology pediatrics at Children’s Hospital Los Angeles (CHLA).

“The Quadrato lab’s novel techniques and focus on neurogenetic disorders has begun to change our field’s understanding of neurodevelopmental disorders,” said Santoro. “Through continued collaborations between CHLA and USC, we hope to identify therapeutic targets for the treatment of these conditions in the future.”

“Every time somebody studies SYNGAP, we find out it does something else,” said Mike Graglia, whose son carries a SYNGAP1 variant, and who serves as the managing director of the SynGAP Research Fund, which provided support for the study. 

“The dogma is that all disease-causing variants have the same impact. In real life, it’s way more complicated. And what we’re starting to see is that these patients with different disease-causing variants have variable presentations. So, the depth of Giorgia’s work helps us understand these differences.”

About the study

Additional authors include Tiantian Xu from USC and Xiangya Hospital at Central South University in China; Tuan Nguyen, Brent Wilkinson, Negar Hosseini, Sarah Nguyen, Jean-Paul Urenda, Ilse Flores, Alexander Atamian, and Marcelo P. Coba from USC; Gavin Knight and Randolph S. Ashton from the University of Wisconsin-Madison; Camilo Rojas, Ritin Sharma, Patrick Pirrotte, and Gavin Rumbaugh from the University of Florida Scripps Biomedical Research Institute and Scripps Research; Roger Moore from City of Hope Comprehensive Cancer Center; and Eric J. Huang from City of Hope Comprehensive Cancer Center and the Translational Genomics Research Institute in Phoenix. 

Funding: The majority of the funding came from private sources, including the SynGAP Research Fund, the Donald D. and Delia B. Baxter Foundation, the Edward Mallinckrodt Jr. Foundation, and The Eli and Edythe Broad Foundation. Additional support came from federal funding from the National Science Foundation (grant 5351784498), the National Institute of Mental Health (grant MH115005), and the National Cancer Institute (grant P30CA033572).

Knight and Ashton are inventors on U.S. patent application number 16/044236 that describes methods for generating microarrayed single rosette cultures and are co-founders of Neurosetta LLC.

About this ASD, genetics, and brain development research news

Author: Laura LeBlanc
Source: USC
Contact: Laura LeBlanc – USC
Image: The image is credited to Neuroscience News

Original Research: Closed access.
The autism-associated gene SYNGAP1 regulates human cortical neurogenesis” by Giorgia Quadrato et al. Nature Neuroscience


The autism-associated gene SYNGAP1 regulates human cortical neurogenesis

Genes involved in synaptic function are enriched among those with autism spectrum disorder (ASD)-associated rare genetic variants. Dysregulated cortical neurogenesis has been implicated as a convergent mechanism in ASD pathophysiology, yet it remains unknown how ‘synaptic’ ASD risk genes contribute to these phenotypes, which arise before synaptogenesis.

Here, we show that the synaptic Ras GTPase-activating (RASGAP) protein 1 (SYNGAP1, a top ASD risk gene) is expressed within the apical domain of human radial glia cells (hRGCs).

In a human cortical organoid model of SYNGAP1 haploinsufficiency, we find dysregulated cytoskeletal dynamics that impair the scaffolding and division plane of hRGCs, resulting in disrupted lamination and accelerated maturation of cortical projection neurons.

Additionally, we confirmed an imbalance in the ratio of progenitors to neurons in a mouse model of Syngap1 haploinsufficiency.

Thus, SYNGAP1-related brain disorders may arise through non-synaptic mechanisms, highlighting the need to study genes associated with neurodevelopmental disorders (NDDs) in diverse human cell types and developmental stages.

Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.