Neurological Notes: How We Process Music

New York University researchers have identified how brain rhythms are used to process music, a finding that also shows how our perception of notes and melodies can be used as a method to better understand the auditory system.

The study, which appears in the journal Proceedings of the National Academy of Sciences, points to a newfound role the brain’s cortical oscillations play in the detection of musical sequences and suggests musical training can enhance the functional role of brain rhythms.

“We’ve isolated the rhythms in the brain that match rhythms in music,” explains Keith Doelling, an NYU Ph.D. student and the study’s lead author. “Specifically, our findings show that the presence of these rhythms enhances our perception of music and of pitch changes.”

Not surprisingly, the study found that musicians have more potent oscillatory mechanisms than do non-musicians—but this discovery’s importance goes beyond the value of musical instruction.

“What this shows is we can be trained, in effect, to make more efficient use of our auditory-detection systems,” observes study co-author David Poeppel, a professor in NYU’s Department of Psychology and Center for Neural Science and director of the Max Planck Institute for Empirical Aesthetics in Frankfurt. “Musicians, through their experience, are simply better at this type of processing.”

Previous research has shown that brain rhythms very precisely synchronize with speech, enabling us to parse continuous streams of speech—in other words, how we can isolate syllables, words, and phrases from speech, which is not, when we hear it, marked by spaces or punctuation.

However, it has not been clear what role such cortical brain rhythms, or oscillations, play in processing other types of natural and complex sounds, such as music.

To address these questions, the NYU researchers conducted three experiments using magnetoencephalography (MEG), which allows measurements of the tiny magnetic fields generated by brain activity. The study’s subjects were asked to detect short pitch distortions in 13-second clips of classical piano music (by Bach, Beethoven, Brahms) that varied in tempo—from half a note to eight notes per second. The study’s authors divided the subjects into musicians (those with at least six years of musical training and who were currently practicing music) and non-musicians (those with two or fewer years of musical training and who were no longer involved in it).

Image shows music notes made out of brains.
NYU neuroscientists have identified how brain rhythms are used to process music, a finding that also shows how our perception of notes and melodies can be used as a method to better understand the auditory system. Image is for illustrative purposes only.

For music that is faster than one note per second, both musicians and non-musicians showed cortical oscillations that synchronized with the note rate of the clips—in other words, these oscillations were effectively employed by everyone to process the sounds they heard, although musicians’ brains synchronized more to the musical rhythms. Only musicians, however, showed oscillations that synchronized with unusually slow clips.

This difference, the researchers say, may suggest that non-musicians are unable to process the music as a continuous melody rather than as individual notes. Moreover, musicians much more accurately detected pitch distortions—as evidenced by corresponding cortical oscillations. Brain rhythms, they add, therefore appear to play a role in parsing and grouping sound streams into ‘chunks’ that are then analyzed as speech or music.

About this neuroscience and music research

Funding: The study was supported by grants from the National Institutes of Health (2R01 DC05660) and the National Science Foundation (DGE 1342536).

Source: James Devitt – NYU
Image Source: The image is in the public domain. Feel free to share.
Original Research: Abstract for “Cortical entrainment to music and its modulation by expertise” by Keith B. Doelling and David Poeppel in PNAS. Published online October 26 2015 doi:10.1073/pnas.1508431112


Abstract

Cortical entrainment to music and its modulation by expertise

Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (<8 Hz; delta–theta) oscillations, similarly entrain to music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15–30 Hz)—often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition.

“Cortical entrainment to music and its modulation by expertise” by Keith B. Doelling and David Poeppel in PNAS. Published online October 26 2015 doi:10.1073/pnas.1508431112

Feel free to share this neuroscience article.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.
  1. Reflection
    It is well known that the difficulties in the perception of any information, including musical one, cause strain of the main functional systems in the child’s organism. We see the interdependence between the perception of coded information ( readout algorithm ) and the synapse transmission ( threshold potential ).It proves the possibility of development of muscular fatigue in hands depending on the quantity of eyeballs’ fluctuations.
    The innovative technology ” Reflection ” gives us some explanation in this direction and raises the topic on the necessity of applying of Digital Key in Elementary Music Education.
    http://www.linkedin.com/pub/sergey-stepanov/43/aa8/b72
    NeuromusicLab Reflection Ukraine

Comments are closed.