A password will be e-mailed to you.

New Mechanism by Which Alzheimer’s Spreads Through the Brain

Summary: According to researchers, exosomes can transport toxic aggregates of amyloid beta to new neurons in the brain.

Source: Linkoping University.

The waste-management system of the cell appears to play an important role in the spread of Alzheimer’s disease in the brain. A new study has focused on small membrane-covered droplets known as “exosomes”. It was long believed that the main task of exosomes was to help the cell to get rid of waste products. In simple terms, they were thought of as the cell’s rubbish bags. However, our understanding of exosomes has increased, and we now know that cells throughout the body use exosomes to transmit information. It’s now known that the exosomes can contain both proteins and genetic material, which other cells can absorb.

The Linköping researchers have shown in the new study that exosomes can also transport toxic aggregates of the protein amyloid beta, and in this way spread the disease to new neurons. Aggregated amyloid beta is one of the main findings in the brains of patients with Alzheimer’s disease, the other being aggregates of the protein tau. As time passes, they form ever-increasing deposits in the brain, which coincides with the death of nerve cells. The cognitive functions of a person with Alzheimer’s disease gradually deteriorate as new parts of the brain are affected.

“The spread of the disease follows the way in which parts of the brain are anatomically connected. It seems reasonable to assume that the disease is spread through the connections in the brain, and there has long been speculation about how this spread takes place at the cellular level,” says Martin Hallbeck, associate professor in the Department of Clinical and Experimental Medicine at Linköping University and senior consultant of clinical pathology at Linköping University Hospital.

In a collaboration with researchers at Uppsala University, he and his co-workers have investigated exosomes in brain tissue from deceased persons. The research team at Linköping University found more amyloid beta in exosomes from brains affected by Alzheimer’s disease than in healthy controls. Furthermore, the researchers purified exosomes from the brains from people with Alzheimer’s disease, and investigated whether they could be absorbed by cells cultured in the laboratory.

the researcher looking through a microscope

Researchers at Linköping University study how Alzheimer’s disease spreads in the brain. NeuroscienceNews.com image is credited to Thor Balkhed/Linköping University.

“Interestingly, exosomes from patients were absorbed by cultured neurons, and subsequently passed on to new cells. The cells that absorbed exosomes that contained amyloid beta became diseased,” says Martin Hallbeck.

The researchers treated the cultured neurons with various substances that prevent exosomes from being formed, released, or absorbed by other cells. They were able to reduce the spread of the aggregated amyloid beta between cells by disrupting the mechanism in these ways. The methods used in these laboratory experiments are not yet suitable for treating patients, but the discovery is important in principle. “Our study demonstrates that it is possible to influence this pathway, and possibly develop drugs that could prevent the spreading. The findings also open up the possibility of diagnosing Alzheimer’s disease in new ways, by measuring the exosomes,” says Martin Hallbeck.

About this neuroscience research article

Funding: The research has received financial support from donors that include the Swedish Research Council, the Swedish Alzheimer’s Foundation, and the Swedish Brain Foundation.

Source: Karin Söderlund Leifler – Linkoping University
Publisher: Organized by NeuroscienceNews.com.
Image Source: NeuroscienceNews.com image is credited to Thor Balkhed/Linköping University.
Original Research: Open access research for “Alzheimer’s disease pathology propagation by exosomes containing toxic amyloid-beta oligomers” by Maitrayee Sardar Sinha, Anna Ansell-Schultz, Livia Civitelli, Camilla Hildesjö, Max Larsson, Lars Lannfelt, Martin Ingelsson, and Martin Hallbeck in Acta Neuropathologica. Published June 13 2018
doi:10.1007/s00401-018-1868-1

Cite This NeuroscienceNews.com Article
Linkoping University “New Mechanism by Which Alzheimer’s Spreads Through the Brain.” NeuroscienceNews. NeuroscienceNews, 13 June 2018.
<http://neurosciencenews.com/alzheimers-spread-mechanism-9332/>.
Linkoping University (2018, June 13). New Mechanism by Which Alzheimer’s Spreads Through the Brain. NeuroscienceNews. Retrieved June 13, 2018 from http://neurosciencenews.com/alzheimers-spread-mechanism-9332/
Linkoping University “New Mechanism by Which Alzheimer’s Spreads Through the Brain.” http://neurosciencenews.com/alzheimers-spread-mechanism-9332/ (accessed June 13, 2018).

Abstract

Alzheimer’s disease pathology propagation by exosomes containing toxic amyloid-beta oligomers

The gradual deterioration of cognitive functions in Alzheimer’s disease is paralleled by a hierarchical progression of amyloid-beta and tau brain pathology. Recent findings indicate that toxic oligomers of amyloid-beta may cause propagation of pathology in a prion-like manner, although the underlying mechanisms are incompletely understood. Here we show that small extracellular vesicles, exosomes, from Alzheimer patients’ brains contain increased levels of amyloid-beta oligomers and can act as vehicles for the neuron-to-neuron transfer of such toxic species in recipient neurons in culture. Moreover, blocking the formation, secretion or uptake of exosomes was found to reduce both the spread of oligomers and the related toxicity. Taken together, our results imply that exosomes are centrally involved in Alzheimer’s disease and that they could serve as targets for development of new diagnostic and therapeutic principles.

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive the latest neuroscience headlines and summaries sent to your email daily from NeuroscienceNews.com
We hate spam and only use your email to contact you about newsletters. We do not sell email addresses. You can cancel your subscription any time.
No more articles