Faster Brain Waves Make Shorter Gaps in the Visual System

“Blink and you’ll miss it” isn’t only for eyelids. The human brain also blinks, dropping a few frames of visual information here and there.

Those lapses of attention come fast — maybe just once every tenth of a second. But some people may be missing more than others, according to psychologists at the University of Wisconsin-Madison.

“Intuitively we have this sense that we’re viewing the world in a continuous stream, constantly taking in the same amount of information,” says Jason Samaha, a UW-Madison doctoral student in psychology. “So if I told people that every 100 milliseconds their brains were taking a bit of a break, I think that would surprise a lot of them.”

Samaha and UW-Madison psychology Professor Brad Postle have drawn a connection between that quick blink in the visual processing system and a rhythmic pattern in the brain’s electrical activity called the alpha oscillation.

Alpha oscillations are regular fluctuations in the electrical activity in the back of the human brain — an area that includes the visual cortex, responsible for processing signals from the eyes. These alpha oscillations rise and fall endlessly, tracing a wave-like thrum of brain activity.

Recently, brain researchers demonstrated that our visual acuity is at its best when a visual stimulus appears as the alpha wave is near a certain peak. The farther from that peak, the more likely a flash of visual information falls on the retina without consciously registering on the viewer.

“That made us wonder: Maybe this is a neural marker that can predict the rate at which we sample the world visually,” says Samaha, whose work on that marker was published recently in the journal Current Biology. “Someone with a faster alpha oscillation has more of those peaks. It’s almost as if they’re sampling the world more frequently than someone with a slower alpha oscillation.”

To test that idea, Samaha sat people in front of a screen and asked them to watch closely spaced flashes of light. Their alpha oscillations were recorded before and during the task.

“The flashes can be so close together that they appear to be one,” Samaha says. “A delay of 10 milliseconds (just one-hundredth of a second), for example, is just too fast for you to perceive two flashes.”

The longer the delay between flashes, the more likely the test subjects could correctly discern two flashes from one. But the subjects began to sort themselves out based on alpha frequency.

“People with a faster alpha frequency can perceive two flashes with a significantly shorter gap between them — maybe 25 milliseconds,” says Samaha, “whereas someone with a slower alpha frequency can’t perceive two flashes until they have closer to 45 milliseconds delay.”

Image of a woman with brown eyes.

Lapses of attention by the brain to visual information come maybe once every tenth of a second. But some people may be missing more than others, according to psychologists at the University of Wisconsin-Madison. Image is for illustrative purposes only.

The faster the regular rhythm of the working brain (represented by alpha oscillation), the more fine-grained the resolution in visual perception.

Of course, precious few discrete events take place within a couple dozen milliseconds. Blinking eyelids can take 400 milliseconds — a relatively pregnant pause — to close and reopen. But in cases where physical reaction time is at a premium, every bit helps.

Samaha thinks of a baseball player. In the 400 milliseconds it takes a professionally thrown fastball to reach the plate, the batter has to budget time for locating the baseball, identifying its spin, deciding whether and where to swing, and actually whipping the bat around to the right spot.

“In a very brief window of time, you have to choose to begin a reaction and where to direct it,” says Samaha. “Having finer resolution may help in cases like that. Maybe good hitters — and other people who can react quickly to a visual stimulus — have very fast alpha oscillations.”

World Series outcomes aside, Samaha sees the study’s results contributing to deeper discussions of how we relate to the world around us.

“The more interesting implications of the research concern what constitutes our conscious visual perception of the world,” he says. “We seem to find a neural marker of conscious visual updating, and that’s interesting to a lot of people who are looking for neural correlates of consciousness.”

About this visual neuroscience research

Funding: Samaha’s work is supported by the National Institutes of Health.

Source: Chris Barncard – University of Wisconsin Madison
Image Credit: The image is in the public domain
Original Research: Abstract for “The Speed of Alpha-Band Oscillations Predicts the Temporal Resolution of Visual Perception” by Jason Samaha and Bradley R. Postle in Current Biology. Published online October 29 2015 doi:10.1016/j.cub.2015.10.007


Abstract

The Speed of Alpha-Band Oscillations Predicts the Temporal Resolution of Visual Perception

Highlights
•Individuals with higher alpha frequencies have vision with finer temporal resolution
•Eyes-closed and prestimulus peak alpha frequency both show this relationship
•Within an individual, spontaneous fluctuations in alpha frequency predict perception
•Alpha oscillations may dictate the resolution of conscious visual updating

Summary
Evidence suggests that scalp-recorded occipital alpha-band (8–13 Hz) oscillations reflect phasic information transfer in thalamocortical neurons projecting from lateral geniculate nucleus to visual cortex [ 1–5 ]. In animals, the phase of ongoing alpha oscillations has been shown to modulate stimulus discrimination and neuronal spiking [ 6 ]. Human research has shown that alpha phase predicts visual perception of near-threshold stimuli [ 7–11 ] and subsequent neural activity [ 12–14 ] and that the frequency of these oscillations predicts reaction times [ 15 ], as well as the maximum temporal interval necessary for perceived simultaneity [ 16 ]. These phasic effects have led to the hypothesis that conscious perception occurs in discrete temporal windows, clocked by the frequency of alpha oscillations [ 17–21 ]. Under this hypothesis, variation in the frequency of occipital alpha oscillations should predict variation in the temporal resolution of visual perception. Specifically, when two stimuli fall within the same alpha cycle, they may be perceived as a single stimulus, resulting in perception with lower temporal resolution when alpha frequency is lower. We tested this by assessing the relationship between two-flash fusion thresholds (a measure of the temporal resolution of visual perception) and the frequency of eyes-closed and task-related alpha rhythms. We found, both between and within subjects, that faster alpha frequencies predicted more accurate flash discrimination, providing novel evidence linking alpha frequency to the temporal resolution of perception.

“The Speed of Alpha-Band Oscillations Predicts the Temporal Resolution of Visual Perception” by Jason Samaha and Bradley R. Postle in Current Biology. Published online October 29 2015 doi:10.1016/j.cub.2015.10.007

Feel free to share this neuroscience news.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive the latest neuroscience headlines and summaries sent to your email daily from NeuroscienceNews.com
We hate spam and only use your email to contact you about newsletters. We do not sell email addresses. You can cancel your subscription any time.
No more articles