Using Virtual Reality to Investigate Autism’s Neural Network Dynamics

Summary: Combining novel virtual reality imaging with machine learning, researchers were able to accurately detect mouse models of ASD compared to wild-type mice based on cortical functional network dynamics while the animal was in motion.

Source: Kobe University

An international research collaboration has developed a VR imaging system that can measure a wide range of neural activity in the cortices of mice during active behavior. This enabled them to illuminate the abnormalities in cortical functional network dynamics that are found in autism model mice.

Using machine learning, they were also able to highly accurately distinguish between autism model mice and wild-type mice based on the cortical functional network patterns when the mice start or stop running.

The research group was led by Professor Toru Takumi and Assistant Professor Nobuhiro Nakai (both of the Department of Physiology, Kobe University Graduate School of Medicine), and Masaaki Sato, (Lecturer, Department of Pharmacology, Graduate School of Medicine, Hokkaido University). Professor Takumi is also a Visiting Senior Scientist at RIKEN Center for Biosystems Dynamics Research.

Future research on functional brain network dynamics in autism is expected to lead to the development of new biomarkers for autism diagnosis.

The results of this research will be published in Cell Reports.

Main Points

  • The researchers developed a VR imaging system that can measure a wide range of cortical activity from mice in action.
  • Mice models of autism have dense cortical functional networks and reduced modularity after motor initiation.
  • Machine learning can highly accurately identify autism model mice from their cortical functional network patterns.

Research Background
Autism (autism spectrum disorder) is a neurodevelopmental disorder with many unexplored aspects, characterized by poor social communication, intense preoccupation with certain things, and repetitive behaviors. The number of autistic individuals is markedly increasing, which is considered to be a significant social issue.

Even now, autism diagnosis is based on behavioral characteristics, which is far from a quantitative perspective, and there is great demand for the discovery of a new biomarker.

In recent years, research has been conducted to identify functional brain abnormalities unique to autistic individuals. Resting-state fMRI studies suggest that the density of functional brain networks increases in young autistic individuals and decreases in adults. However, these changes vary widely from individual to individual.

As the analysis was conducted when the participants were in a resting state, it was unclear how abnormalities in functional brain networks affect behavior.

Genetics contribute significantly to autism, and genomic abnormalities such as copy number variations (CNV) are thought to be involved in neuropathology. Recently, animals (mainly mice) modeling human genomic aberrations are often used to elucidate the neuropathology of autism.

In this study, the researchers developed a VR imaging system that can measure the brain activity of autism model mice in real-time during active behavior. By investigating brain functional network dynamics, the research group aimed to clarify autism-specific phenomena in the brain during behavior.

Results
First, a VR imaging system was constructed. A mouse with its head fixed in place is put on a treadmill and shown an image of a virtual space projected on a screen. The virtual space was prepared so that it reproduced the field used for mouse behavioral experiments. The motion of the treadmill is reflected in the video images, allowing the mice to freely explore the virtual space.

Alongside behavioral measurements such as locomotion, transcranial calcium imaging was performed simultaneously so that a wide range of functional area activity in the cerebral cortex could be measured in real time. For this purpose, the researchers used transgenic mice that express calcium sensor protein (GCaMP) in their neurons.

In addition, they established a method for analyzing cortical functional network dynamics. They calculated correlations between functional areas from one-second neural activity data obtained via calcium imaging, and visualized the functional network using graph theory.

The researchers analyzed the 3 second time windows before and after when the mouse spontaneously started or stopped moving on the treadmill (locomotion) and examined the network characteristics in each time window.

The results revealed that the network structure changes with the onset of locomotion and that modularity increases. It was also found that the network structure returns to the resting state when locomotion is stopped. Thus, they succeeded in visualizing the network dynamics during the switch from rest to locomotion and from locomotion to rest.

Next, the researchers used this VR imaging system to analyze the functional cortical network of autism model mice. For the experiment, they used 15q dup mice, the first established mouse model of autism with copy number variations. 15q dup mice exhibited reduced locomotion and distance traveled in VR space.

Examination of the functional cortical network revealed higher network connections after locomotion initiation, decreased network centrality, and decreased modularity of the functional network.

Based on these differences in network patterns, the researchers attempted to identify autism model mice by cortical function networks using support vector machines (SVM), a type of machine learning. The network patterns of multiple individual 15q dup mice and wild-type mice were used as a training data and the SVM was able to distinguish whether individual test data was from an autism model mouse or not with 78~89% accuracy rate.

This shows the outline of a head
Autism (autism spectrum disorder) is a neurodevelopmental disorder with many unexplored aspects, characterized by poor social communication, intense preoccupation with certain things, and repetitive behaviors. Image is in the public domain

This result suggests that the functional brain network during behavior contains versatile information about the genotype identification. The researchers also examined which information was influential in the brain and found that functional connectivity in the motor cortex was essential for identification in autism model mice.

In summary, the 15q dup mice, a model of autism, had a dense functional cortical network during locomotion and reduced modularity. The researchers also found that machine learning can identify autism model mice in a highly accurate manner based on their functional cortical network patterns that are associated with behavioral changes.

Further Research
The functional brain network in mouse models of autism is characterized by the functional connectivity of the motor cortex, which is crucial for determining autism.

Detailed studies of these anatomical connections and neurophysiology will help elucidate which networks between the motor cortex and other brain regions play critical roles in autism pathology.

In addition, further research on the functional brain network dynamics of autism during active behavior is expected to lead to the discovery of new biomarkers for the diagnosis of autism.

By analyzing the extensive cortical activity recorded from active mice, the researchers were able to visualize the dynamic behavior-dependent changes in the functional cortical network of the brain. VR allows for the creation of multimodal environments that utilize multiple sensory information, including visual, auditory, and olfactory senses.

Since a significant symptom of autism in people is impaired social communication, the researchers would like to construct a social environment for mice in the virtual space and investigate how the functional network dynamics change when autism model mice perform social behaviors.

About this autism and virtual reality research news

Author: Verity Townsend
Source: Kobe University
Contact: Verity Townsend – Kobe University
Image: The image is in the public domain

Original Research: Open access.
Virtual reality-based real-time imaging reveals abnormal cortical dynamics during behavioral transitions in a mouse model of autism” by Toru Takumi et al. Cell Reports


Abstract

Virtual reality-based real-time imaging reveals abnormal cortical dynamics during behavioral transitions in a mouse model of autism

Highlights

  • VR-based mesoscopic imaging reveals functional cortical networks during behavior
  • Locomotion induces rapid reorganization and modularization of cortical networks
  • 15q dup ASD mice have hyperconnected, less modular cortical networks
  • Motor areas provide contributing features for SVM classification of ASD genotype

Summary

Functional connectivity (FC) can provide insight into cortical circuit dysfunction in neuropsychiatric disorders.

However, dynamic changes in FC related to locomotion with sensory feedback remain to be elucidated.

To investigate FC dynamics in locomoting mice, we develop mesoscopic Ca2+ imaging with a virtual reality (VR) environment. We find rapid reorganization of cortical FC in response to changing behavioral states.

By using machine learning classification, behavioral states are accurately decoded. We then use our VR-based imaging system to study cortical FC in a mouse model of autism and find that locomotion states are associated with altered FC dynamics.

Furthermore, we identify FC patterns involving the motor area as the most distinguishing features of the autism mice from wild-type mice during behavioral transitions, which might correlate with motor clumsiness in individuals with autism.

Our VR-based real-time imaging system provides crucial information to understand FC dynamics linked to behavioral abnormality of neuropsychiatric disorders.

Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.