Genes on the Move Help Nose Make Sense of Scents

Summary: A new study sheds light on the ingenious mechanism that underlies the brain’s ability to distinguish between different smells.

Source: Zuckerman Institute.

The human nose can distinguish one trillion different scents — an extraordinary feat that requires 10 million specialized nerve cells, or neurons, in the nose, and a family of more than 400 dedicated genes. But precisely how these genes and neurons work in concert to pick out a particular scent has long puzzled scientists. This is in large part because the gene activity inside each neuron — where each of these 10 million neurons only chooses to activate one of these hundreds of dedicated genes — seemed far too simple to account for the sheer number of scents that the nose must parse.

But now, a Columbia study in mice has uncovered a striking resourcefulness: by rearranging itself in three-dimensional space, the genome coordinates the regulation of these genes in each neuron, thereby generating the biological diversity needed to detect the scents we experience. The findings were published today in Nature.

“With today’s study, we’ve pinpointed a genomic mechanism by which a finite number of genes can ultimately help distinguish a seemingly near-infinite number of scents,” said Stavros Lomvardas, PhD, a principal investigator at Columbia’s Mortimer B. Zuckerman Mind Brain Behavior Institute and the paper’s senior author.

Smell, also known as olfaction, is mind-bogglingly complex. The receptors in our noses must not only identify a scent, but also gauge how strong it is, scan our memories to determine whether it has been encountered before, and determine if it is pleasing or toxic.

Olfactory receptor neurons, specialized nerve cells that snake from the nose to the brain, make all this possible. And though each neuron contains the full suite of the 400 dedicated olfactory receptor genes, only one of these genes is active in each neuron. Adding to the confusion: the gene that is active appears randomly chosen, and differs from neuron to neuron.

This unusual pattern of gene activity is known as the “one gene per neuron” rule, and has long been a focus of study by scientists such as Dr. Lomvardas. Indeed, deciphering how each olfactory receptor neuron manages to activate only one of these genes — and how this process results in such a finely tuned sense of smell — remained mysterious for decades.

“In mice, olfactory receptor genes are scattered across the genome at about 60 different locations — on different chromosomes that are quite far apart from each other,” said Kevin Monahan, PhD, a postdoctoral research scientist in the Lomvardas lab and the paper’s co-first author. Mice have about 1,000 olfactory receptor genes, more than twice that of humans, potentially indicative of a superior sense of smell.

Traditionally, it has been thought that genes located on different chromosomes rarely, if ever, interacted with each other. By employing a new genomic sequencing technique called in situ Hi-C, Dr. Lomvardas and his team recently revealed that the chromosomes interacted much more frequently than expected.

“In situ Hi-C is revolutionary in large part because it allows us to map, in 3D, the entire genome inside a living cell,” said Adan Horta, PhD, a recently graduated doctoral candidate in the Lomvardas lab and the paper’s co-first author. “This gives us a snapshot of the genome at a particular point in time.”

Snapshots taken by the researchers showed clusters of olfactory receptor genes, located on different chromosomes, physically moving toward each before choosing an olfactory receptor gene. Soon after these genes huddled together, another type of genetic element known as enhancers clustered in a separate 3D compartment. Enhancers are not themselves genes but regulate the activity of genes.

“We previously discovered a group of enhancers, we named the Greek Islands, located near the various olfactory receptor genes,” said Dr. Horta. “This work showed that these enhancers create hotspots of activity to regulate the “chosen” olfactory receptor gene.

The team also found that the protein Ldb1 plays a key role in this process. It holds the Greek Islands together, allowing them to switch on a specific olfactory receptor gene that then — as a team — interpret the particular scent at hand.

“These teams of genes endow the olfactory system with the ability to respond in diverse ways,” said Dr. Monahan. “The flexibility of this process could help to explain how we easily learn and remember new smells.”

olfactory cells
A section of the olfactory epithelium. Cells that express a single specific olfactory receptor gene (Olfr17) are in green and DNA, which labels the nucleus of every cells, is blue. Because of the random choice, cells expressing Olfr17 are scattered throughout the tissue. NeuroscienceNews.com image is credited to Kevin Monahan & Adan Horta/Lomvardas lab/Columbia’s Zuckerman Institute.

Though specific to olfaction, the researchers’ findings could have implications for other areas of biology in which inter-chromosome interactions play a role.

“Interactions between chromosomes may be the culprit for shifts in the genome — called genomic translocations — that are known to cause cancer,” said Dr. Lomvardas, who is also a member of the Kavli Institute for Brain Science at Columbia University as well as professor of biology and molecular biophysics and of neuroscience at Columbia University Irving Medical Center. “Could the activities of other cells be shaped by the three-dimensional changes we see in olfactory receptor neurons? This is an open question that we hope to explore.”

About this neuroscience research article

Funding: This research was supported by the National Institutes of Health (F31 DC016785, F32 GM108474, U01DA0408052, R01DC013560, R01DC015451, S10OD020056)

The authors report no financial or other conflicts of interest.

Source: Anne Holden – Zuckerman Institute
Publisher: Organized by NeuroscienceNews.com.
Image Source: NeuroscienceNews.com image is credited to Kevin Monahan & Adan Horta/Lomvardas lab/Columbia’s Zuckerman Institute.
Original Research: Abstract for “LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice” by Kevin Monahan, Adan Horta & Stavros Lomvardasin Nature. Published January 9 2019.
doi:10.1038/s41586-018-0845-0

Cite This NeuroscienceNews.com Article

[cbtabs][cbtab title=”MLA”]Zuckerman Institute”Genes on the Move Help Nose Make Sense of Scents.” NeuroscienceNews. NeuroscienceNews, 9 January 2019.
<https://neurosciencenews.com/olfaction-genetics-10480/>.[/cbtab][cbtab title=”APA”]Zuckerman Institute(2019, January 9). Genes on the Move Help Nose Make Sense of Scents. NeuroscienceNews. Retrieved January 9, 2019 from https://neurosciencenews.com/olfaction-genetics-10480/[/cbtab][cbtab title=”Chicago”]Zuckerman Institute”Genes on the Move Help Nose Make Sense of Scents.” https://neurosciencenews.com/olfaction-genetics-10480/ (accessed January 9, 2019).[/cbtab][/cbtabs]


Abstract

LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice

The genome is partitioned into topologically associated domains and genomic compartments with shared chromatin valence. This architecture is constrained by the DNA polymer, which precludes interactions between genes on different chromosomes. Here we report a marked divergence from this pattern of nuclear organization that occurs in mouse olfactory sensory neurons. Chromatin conformation capture using in situ Hi-C on fluorescence-activated cell-sorted olfactory sensory neurons and their progenitors shows that olfactory receptor gene clusters from 18 chromosomes make specific and robust interchromosomal contacts that increase with differentiation of the cells. These contacts are orchestrated by intergenic olfactory receptor enhancers, the ‘Greek islands’, which first contribute to the formation of olfactory receptor compartments and then form a multi-chromosomal super-enhancer that associates with the single active olfactory receptor gene. The Greek-island-bound transcription factor LHX2 and adaptor protein LDB1 regulate the assembly and maintenance of olfactory receptor compartments, Greek island hubs and olfactory receptor transcription, providing mechanistic insights into and functional support for the role of trans interactions in gene expression.

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive our recent neuroscience headlines and summaries sent to your email once a day, totally free.
We hate spam and only use your email to contact you about newsletters. You can cancel your subscription any time.