A password will be e-mailed to you.

Epilepsy Linked to Brain Volume and Thickness Differences

Summary: UCL researchers report epilepsy is associated with gray matter differences in thickness and volume in several brain regions.

Source: UCL.

Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL Institute of Neurology and the Keck School of Medicine of USC.

The largest-ever neuroimaging study of people with epilepsy, published today in Brain, shows that epilepsy involves more widespread physical differences than previously assumed, even in types of epilepsy that are typically considered to be more benign if seizures are under control.

The brain abnormalities the researchers identified were subtle, and have not yet been implicated in any loss of function.

“We found differences in brain matter even in common epilepsies that are often considered to be comparatively benign. While we haven’t yet assessed the impact of these differences, our findings suggest there’s more to epilepsy than we realise, and now we need to do more research to understand the causes of these differences,” said the study’s lead author, Professor Sanjay Sisodiya (UCL Institute of Neurology & Epilepsy Society).

Epilepsy is a neurological disorder that affects 0.6-1.5% of the global population, comprising many different syndromes and conditions, and defined by a tendency for seizures.

The study was conducted by the global ENIGMA-Epilepsy consortium, part of ENIGMA which is headquartered at the Keck School of Medicine of USC, and pooled data from 24 research centres across Europe, North and South America, Asia and Australia. Structural brain measures were extracted from MRI brain scans of 2,149 people with epilepsy, and compared with 1,727 healthy controls. The epilepsy group was analysed together for common patterns, and divided into four subgroups to identify differences.

The team found reduced grey matter thickness in parts of the brain’s outer layer (cortex) and reduced volume in subcortical brain regions in all epilepsy groups when compared to the control group. Reduced volume and thickness were associated with longer duration of epilepsy. Notably, people with epilepsy exhibited lower volume in the right thalamus – a region which relays sensory and motor signals, and has previously only been associated with certain epilepsies – and reduced thickness in the motor cortex, which controls the body’s movement.

These patterns were even present among people with idiopathic generalised epilepsies, a type of epilepsy characterised by a lack of any noticeable changes in the brain, such that typically an experienced neuroradiologist would not be able to see anything unusual in their brain scans.

“Some of the differences we found were so subtle they could only be detected due to the large sample size that provided us with very robust, detailed data,” said the study’s first author, Dr Christopher Whelan (Mark and Mary Stevens Neuroimaging and Informatics Institute at the Keck School of Medicine of USC & Royal College of Surgeons in Ireland).

brain scans

Brain areas found to have lower cortical thickness among people with epilepsy. NeuroscienceNews.com image is credited to Christopher D Whelan et al.

The researchers also identified differences between the subgroups, which they say must reflect differences in underlying biology, as suggested by recent genetic studies.

“We have identified a common neuroanatomical signature of epilepsy, across multiple epilepsy types. We found that structural changes are present in multiple brain regions, which informs our understanding of epilepsy as a network disorder,” Dr Whelan said.

The authors say their findings need to be followed up by longitudinal and genetic studies which could clarify the cause of the structural differences.

“From our study, we cannot tell whether the structural brain differences are caused by seizures, or perhaps an initial insult to the brain, or other consequences of seizures – nor do we know how this might progress over time. But by identifying these patterns, we are developing a neuroanatomical map showing which brain measures are key for further studies that could improve our understanding and treatment of the epilepsies,” said Professor Sisodiya.

About this neuroscience research article

Source: UCL
Publisher: Organized by NeuroscienceNews.com.
Image Source: NeuroscienceNews.com image is credited to Christopher D Whelan et al.
Original Research: Open access research in Brain.
doi:10.1093/brain/awx341

Cite This NeuroscienceNews.com Article
UCL “Epilepsy Linked to Brain Volume and Thickness Differences.” NeuroscienceNews. NeuroscienceNews, 23 January 2018.
<http://neurosciencenews.com/epilepsy-brain-thickness-volume-8348/>.
UCL (2018, January 23). Epilepsy Linked to Brain Volume and Thickness Differences. NeuroscienceNews. Retrieved January 23, 2018 from http://neurosciencenews.com/epilepsy-brain-thickness-volume-8348/
UCL “Epilepsy Linked to Brain Volume and Thickness Differences.” http://neurosciencenews.com/epilepsy-brain-thickness-volume-8348/ (accessed January 23, 2018).

Abstract

Preterm birth leads to hyper-reactive cognitive control processing and poor white matter organization in adulthood

Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to 1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset, and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus (Cohen’s d = −0.24 to −0.73; P < 1.49 × 10−4), and lower thickness in the precentral gyri bilaterally (d = −0.34 to −0.52; P < 4.31 × 10−6). Both MTLE subgroups showed profound volume reduction in the ipsilateral hippocampus (d = −1.73 to −1.91, P < 1.4 × 10−19), and lower thickness in extrahippocampal cortical regions, including the precentral and paracentral gyri, compared to controls (d = −0.36 to −0.52; P < 1.49 × 10−4). Thickness differences of the ipsilateral temporopolar, parahippocampal, entorhinal, and fusiform gyri, contralateral pars triangularis, and bilateral precuneus, superior frontal and caudal middle frontal gyri were observed in left, but not right, MTLE (d = −0.29 to −0.54; P < 1.49 × 10−4). Contrastingly, thickness differences of the ipsilateral pars opercularis, and contralateral transverse temporal gyrus, were observed in right, but not left, MTLE (d = −0.27 to −0.51; P < 1.49 × 10−4). Lower subcortical volume and cortical thickness associated with a longer duration of epilepsy in the all-epilepsies, all-other-epilepsies, and right MTLE groups (beta, b < −0.0018; P < 1.49 × 10−4). In the largest neuroimaging study of epilepsy to date, we provide information on the common epilepsies that could not be realistically acquired in any other way. Our study provides a robust ranking of brain measures that can be further targeted for study in genetic and neuropathological studies. This worldwide initiative identifies patterns of shared grey matter reduction across epilepsy syndromes, and distinctive abnormalities between epilepsy syndromes, which inform our understanding of epilepsy as a network disorder, and indicate that certain epilepsy syndromes involve more widespread structural compromise than previously assumed.

Feel free to share this Neuroscience News.
Join our Newsletter
I agree to have my personal information transferred to AWeber for Neuroscience Newsletter ( more information )
Sign up to receive the latest neuroscience headlines and summaries sent to your email daily from NeuroscienceNews.com
We hate spam and only use your email to contact you about newsletters. We do not sell email addresses. You can cancel your subscription any time.
No more articles